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STATEMENT OF THE STUDIED PROBLEM

Principal objective of the research supported by this ARO grant was to study the causes of
the damage and structural disorder in polymers and fiber reinforced polymers attributed to the
curing process. This research was motivated by the loss of stiffness and strength associated with
this damage. In certain cases the loss of strength attributed to these microcracks and fiber
clustering places unacceptable limitations on the use of polymers and fiber reinforced polymer
composite in engineering and military applications.

The basic philosophy of the approach used in this research is that the study of the considered
phenomena must include two following facts: (a) that the microstructure of the polymer during
the cure is strongly disordered, (b) that the damage evolution is activated both by thermal and
stress field and (c) that the fiber clustering process may be stable or unstable. In view of the first
two statements it is immediately obvious that the traditional, continuum or mean-field
micromechanical models will not provide a rational basis for the consideration of processes
which are non-deterministic, local and dependent on the extreme statistics of the microcrack
distribution in the evolving gel. It is, therefore, concluded that the governing equations must
reflect: (a) the randomness of the process and (b) the disordered lattice of the gelling polymer
matrix.

The long term objective of this work, which should be reached in the future, is to formulate
an analytical model which would enable optimization of the curing process (temperature,
pressure and time to which a resin is subjected in the autoclave). This optimization process
should allow for the determination of the temperature-time regime during the cure which should
minimize the incurred damage and fiber clustering.

SUMMARY OF THE MOST
IMPORTANT RESULTS

(1) Chemo-Mechanics of Process Induced Mechanics

The most important conclusion of the research performed and completed during the
sponsored period is that the rate at which the molecular chains rupture and damage evolves is at
its maximum immediately after the sol to gel transition, i.e. just after gel molecule is formed. In
the considered case most of the damage was accumulated during the period between 2 and 4
hours during which the autoclave temperature was held constant. This observation has significant
and potentially far reaching consequences.

From the point of view of the cure optimization process this observation means that the
thermal shrinkage has little effect on the damage. Therefore, the duration of the stage during
which the autoclave temperature is lowered can be shortened if so desired. Further, simulations
are needed to provide the effect which different temperatures and hold times have on the cure
related damage.

From the analytical point of view this observation means that a rational analytical model
cannot be developed using the methods based on the average stresses, strains and damage and the
effective (or volume averaged) material properties. The microcrack nucleation and growth



depends almost entirely on the stress concentrations within a strongly disordered gel molecule.
Immediately following the sol to gel transition the average stresses in the matrix are very small.
However, the stress concentrations are huge since the lattice formed by crosslinked nodules of
the evolving gel molecule is strongly disordered. As a result the balance between the forces on
individual links and their strength is least favorable in the aftermath of gelation. As soon as the
microstructural order is established this balance becomes more favorable even though the
average stress may become larger.

From analytical point of view the work performed during this project clearly indicates that a
rational model must span at least two scales (micro and macro) and must couple the heat transfer,
collision theory (rate of chemical reactions of association and dissociation) and balance of
mechanical momentum. Moreover, the material parameters change with time as a result of the
evolving order, increased connectivity (progressive crosslinking of molecular links) and
attendant viscosity. None of these effects can be described by the traditional tools of the
continuum mechanics.

(2) Clustering of Fibers During the Curing Process

The analysis of the fiber clustering problem has focused on, and provided answers to, the
following two important questions:

(i) at what point during the curing process does fiber clustering occur ?
and

(ii) what is the rate at which this process develops and what are the parameters that
control it ?

Regarding the first question, it was demonstrated that the clustering of fibers occurs early
during the curing process when the matrix is a very viscous liquid that starts exhibiting non-
Newtonian features. In the later phase of the curing, i.e. when the matrix displays strong non-
Newtonian properties, it was shown that relative motions of the fibers are unlikely to occur so
that the fibers will remain in the configuration that they possessed at the time of the Newtonian
to non-Newtonian transition.

Concerning the second issue, which was approached by analyzing the stability of a Stokes
flow through an array of fibers, it was shown that fiber clustering is always initiated but that its
rate of growth is very strongly affected by the fiber concentration at the time of the transition.
Specifically, a dramatic increase in the growth rate with the ratio of the distance between fiber
centers to the fiber radius has been observed. The fiber geometry, i.e. staggered or unstaggered
configurations, has been shown to have only a very weak effect on the growth rate, slightly larger
for staggered arrays of fibers than for unstaggered ones. Finally, estimates of the growth rates
were presented for a variety of conditions.

From the point of view of the optimization of the curing process, the above findings indicate
that the clustering of the fibers can be minimized by shortening the time of the transition of the
matrix from an at least approximately Newtonian behavior to a non-Newtonian one, and by
minimizing the fiber concentration at that transition. The estimates of the growth rate which have
been reported can be used to determine appropriate values of the transition time and fiber
concentration.

When present, clusters of fibers clearly lead to a spatial nonuniformity of the mechanical
properties of a composite material. This observation has motivated the final part of this research
effort, i.e. the assessment of the effects of spatial random variations in the strength of the fibers
on the global properties of a composite. Under a local load sharing rule, a set of three first order
differential equations was derived that govern not only the stress-strain relationship of the
composite beyond the elastic regime but also the distribution of the force carried by the fibers
and thus permits the prediction of the mechanical behavior of a composite specimen from the
spatial description of its mechanical properties.
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ABSTRACT

The paper focuses on the establishment of a micromechanically based
"analytical model for the determination of the cure induced average temperature,
stress and strain fields in a resin slab. Based on the new aggregation-percolation
type of models the proposed algorithm seems to be well suited for the requisite
analyses. A geometrically simple problem was selected to illustrate main aspects
of the problem and the proposed analytical model.

INTRODUCTION

Mechanical response of polymer matrix composites, and ultimately their
strength, is strongly affected by the residual stress and submicro- and micro-
defects induced during the curing process. The magnitude of residual stresses and
the size of micro-defects depend on the chemical process, thermal gradients and
pressure developed within the cured specimen and the duration of the process.
Consequently, optimization of the curing process, i.e. minimization of the
performance limiting birth defects, is undeniably an important task with far
reaching consequences. However, the inherent complexity of the phenomenon,
coupling exothermic chemical reactions, heat transfer and attendant emergence of
the stress and strain fields defies easy solutions. Additional complexity is
introduced by the disordered and evolving (time dependent) microstructure of the
polymeric matrix. Consequently, it is unlikely that a rational analytical model for
the description of the underlying physico-chemical phenomena can be sought
within the framework of the conventional continuum theories.

Polymerization, or more specifically sol-to-gel transition is a process
recognized as a critical phenomenon or phase transition. Continuous and gradual
formation of bonds, generated during binary collisions of n-mers on the



microscale, results in a singular behavior on the macroscale. In other words, sol
becomes gel during the irreversible connectivity transition of the material.
Singular behavior of some transport macro-properties further complicates the
process and its description.

Some aspects of this physico-chemical process in a strongly disordered
medium were studied in the past in isolation using conventional methods. For
example, the problem of heat conduction in a body undergoing solidification
(Stefan problem) and the associated development of residual stresses has been an
area attracting some interest in the past (Weiner and Boley, 1963, Li and Barber,
1989, Guz', et al., 1988). The development of thermal stresses in chemically
hardening elastic media has been analyzed by Levitsky and Shaffer (1974).
Related problems were also studied within the framework of viscoelasticity by
Muki and Sternberg (1961), Lee and Rogers (1963) and Weitsman (1979).
Several investigations were focused on the development of residual stresses in
thermosetting composite laminates (Hahn and Pagano, 1976) , Bogetti and
Gillespie, 1989) or void formation (Halpin, et al., 1984) during the curing
process. All of the above models were strictly phenomenological. The relation
between the actual chemical processes (often lumped into a vaguely defined
degree of cure) and the changing transport properties is at least tenuous and
limited to a fitted set of data. In all cases the material was assumed to be
homogeneous and the moving surface sharply dividing the sol from the gel (Guz',
et al., 1988) geometrically perfect. These deterministic, continuum models may,
indeed, suffice for prediction of mean (average) fields. However, the
conventional continuum models are inherently unable to predict the fluctuations
of temperature, stress and strain fields responsible for damage (and "birth
defects") and the attendant spatial-temporal disorder characterizing the phase
transition.

The objective of this paper is to recapitulate some of the newer advances in
the description of the polymerization process and suggest a rational
micromechanically based model for the prediction of the viscoelastic phenomena
on the macroscale.

GELATION OF THERMOSETTING POLYMERS

The process of polymerization or gelation is characterized by a sudden,
abrupt and dramatic change of the system on the macroscale at a particular value
of a continuously varying micro-parameter (number of cross-linking bonds
formed between monomers). Pioneering studies of polymerization of branching
molecules by Flory (1941,1953) and Stockmayer (1943) later became known as
bond percolation on a Bethe lattice. However, the Bethe lattice cannot model the
spatial distribution of clusters and the ensuing spatial disorder. More recently the
critical phenomena of sol-gel transition has been studied extensively within the
framework of the percolation theory by deGennes (1976), Stauffer (1982) and
Hernrann, et al., (1983). In these studies, monomers are placed in a cubic lattice
(instead of an infinitely large Bethe tree) and bonds are allowed to form
randomly between them. In the course of this process, formed are
macromolecules of different sizes like dimers, trimers, n-mers etc. At some
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critical point of the reaction (commonly referred to as the percolation threshold)
an infinite cluster appears spanning the entire specimen. This infinitely large
macromolecule is known as 'gel', while the collection of finite clusters coexisting
with the gel is referred to as 'sol'. The process of gelation is, therefore, the
transition of phase from a state without a gel to a state with a large gel network
(backbone) spanning the entire specimen. A number of physical properties of the
system exhibit singular behavior at the percolation threshold. Even newer studies
(Martin, et al., 1989, Martin and Adolf, 1991) focus on certain inconsistencies of
the earlier percolation models ignoring aggregation by assuming that the lattice
nodes are occupied by monomers.

In dilute solutions monomers are very mobile. As they diffuse through the
solution they collide, bond to each other and aggregate into clusters of fractal
geometry. In the process of aggregation n-mer clusters form long, entangled
chains. Essential feature of the chain kinetics is that their macro-behavior is
dominated by its large scale properties and that they interact with many neighbors
(Doi and Edwards, 1986).

The aggregates (macromolecules or long chains) become immobilized when
they fill a certain fraction of the available volume. This irreversible connectivity
transition can be conveniently described as a phase transition by a bond
percolation model. The nodes off the lattice are occupied by the aggregates
(rather than monomers). The probability that a bond exists between two
neighboring aggregates is denoted by p. At the bond percolation threshold p = Pc
a finite cluster emerges and the polymeric liquid crosses into solid (gel). The
bond percolation threshold Pc is a universal parameter depending only on the
microstructure (lattice geometry), connectivity range and dimensionality. At the
percolation threshold, parameters such as cluster radius and viscosity v diverge as
a power of the proximity parameter I p - PcI. For example, the scaling law for
the bulk viscosity is

V ~ (Pc - p)-k as P --- Pc- (1)

where k =1.4 ± 0.2 (Martin, et al., 1988) for a typical epoxy resin.
Beyond the percolation threshold p > Pc the newly formed gel backbone

acquires tensile and shear stiffness and strength. The scaling law for the
equilibrium shear stiffness (or somewhat less rigorously macro shear modulus)
was found to be

G*. - (p - pc)T as p - pC+ (2)

where t = 8/3 (Adolf and Martin, 1990).
Since the fraction of bonds p is a monotonically increasing function of

time, both equilibrium and relaxation modulus change with time as well.
Experimental results show that the longest relaxation times for the clusters
diverge at the gel point according to the scaling law (Adolf and Martin, 1990)

(P _ (p.pc)Y (3)
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where y 4. All three scaling laws (1) to (3) are universal in a sense that they do
not depend on tile details of the microstructure, sequence of the bond formation
and duration of the process. Finally, these scaling laws are valid only in the
vicinity of the percolation threshold. For p >> Pc the gel becomes locally macro-
homogeneous allowing application of mean field theories.

From a narrow, parochial view of solid mechanics it might appear that the
study of gel (by percolation and mean field models) suffice for the purpose of
estimating distribution of micro-defects and residual stresses attributable to the
curing process. However, since the nodes of the lattice are occupied by aggregates
(rather than monomers) the viscoelasticity of the lattice in an essential manner
depends on the aggregation processes. More precisely, the viscoelastic properties
of the polymer (and the birth defects) depend on the dynamics of a single cluster
including its connectivity, excluded volume and hydrodynamic interactions
between constituent monomers, etc. Further support for the combined
aggregation-percolation model, advocated in this paper, consists of the measured
defect data. In general, the probability of finding defects spanning more than six
to seven adjacent nodes is very small. Thus, if the defects are indeed measurable
in gm (see Kuksenko and Tamuzs, 1981) the spacing between nodes must be of
the order of aggregate rather than monomer size.

VISCOLELASTICITY OF POLYMERS DURING THE CURING PROCESS

The essential attribute of micromechanical models is that they relate the
response and transport properties of a solid on the macro-scale to its
microstructurc. In a process model it is further necessary to relate the change of
macro-properties to the evolution of the respective physico-chemical processes on
the micro-scale. Thus, the study of viscoelasticity of polymers during the curing
process must be related to the dynamics of a single molecular chain and the
interactions between adjacent chains.

Dynamics of a polymer chain in dilute suspension is, in dependence of the
extent of hydrodynamic interactions, governed either by Rouse or Zimm models
(Doi and Edwards, 1986, Martin, et al., 1989, etc.). In a fixed network (cross-
linked systems) the dynamics of a polymer chain is typically approximated by tile
reptation model (deGennes. 1990, Doi and Edwards, 1986, etc.). In all of these
cases the relaxation modulus scales in a different manner allowing for relatively
precise and convincing experimental determination of the dominant chain
dynamics mechanism.

For example, for times larger than that of the Rouse mode, the relaxation
modulus of the polymer in the post-gel stage is described by (Martin and
"Adolf,1990)

GR (t) = AG*(t) (l+t / -cc )-2/3 exp{ -(t / Cz) 0 .4 ) (4)

where A is a constant depending on the instantaneous modulus of the material and
"To is a relaxation time in molecular time scale characterizing the Rouse mode of
dynamics of a polymer cluster.
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The so-called time-tcrnperature superposition principle (see, for example,
Ferry, 1961) allows for the construction of a master relaxation curve
representing hypothetical behavior of a polymer at one temperature over eight
decades on the logarithmic time scale from several curves at different (higher)
temperatures measured over much shorter time intervals. In other words, using
appropriate scaling the duration and the temperature of the test are in a certain,
well defined, sense interchangeable insofar as the extent of stress relaxation is
concerned. This principle was invariably found to hold for uncross-linked
polymers but lacking for the cross-linked polymers. This is a natural consequence
of the fact that the relaxation is friction dependent in uncross-linked polymers. In
cross-linked (thermoset) polymers the viscous behavior is dominated by the rate
of cross-linking rendering the time-temperature superposition principle

"-. inadequate.
SConsidering scaling laws for the relaxation modulus Adolf and Martin (1990)

concluded that the scaling law for the relaxation shear modulus G(t) scales
equally below and above the percolation threshold. Thus, the master relaxation
curve (time-cure superpTosition principle) for the complex shear modulus in the
vicinity of the phase transition can be obtained scaling the actual time t by the
longest relaxation time "tz. The inverse of the longest relaxation time 1/'Tz is,

ic. physically, a point at which two different limiting behaviors of the complex shear
modulus meet. The ensuing time-cure superposition principle is supposed to be

-: valid only for the incipient gel, i.e in the narrow neighborhood of the percolation

threshold. However, experimental data indicate (Adolf and Martin, 1990) that this
scaling law persists well into what is typically considered the mean field regime.

TRANSIENT CURE INDUCED PROCESSES IN A INFINITE SLAB

Cure Simulation

Consider a slab of thickness 2h, infinitely extended in the direction of x and
z axes (Fig.1). The heat diffusion through the thickness of the slab is governed by
the classical equation

_(pST) a k T+H (5)j •~t a), ay, pH(5

The density (p), thermal conductivity (k) and specific heat (S) of the material
virtually do not change and will, therefore, be assumed to be constant throughout
the process. The polymerization process is exothermic and the rate at which the
heat is _enerated is typically assumed to be proportional to the rate of the cross-
linking

HR HT (6)
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Fig.1 Representation of a infinite slab of resin

In (6) HT is the total heat generated per unit mass of resin during the curing
process. Moreover, a pseudo first order reaction and an Arrhenius relationship is
typically used to define the rate at which the bonds are formed as a function of
the prevailing temperature T (in degrees of Kelvin)

pAoexp(-) - P) (7)

In (7) Ac is a constant, Ea the activation energy for the reaction and R the
universal gas constant.

Taking advantage of the symmetry of the problem, boundary conditions on
the temperature field are

T (y=ho, t) = TA(t) (Sa)

DT(y=O, t)
at =0 (8b)

where TA(t) is a prescribed autoclave temperature sketched in Fig.2.

T

I t2 t3 t

Fi,.2 Variation of autoclave temperature with time.
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Initially, slab is assumed to be at the room temperature (Ti). Therefore, the
initial condition is

ST(y,0) = Ti (9)

The initial boundary value problem, consisting of equations (5) to (7), boundary
conditions (S) and initial condition (9), can be solved only numerically to be able
to determine the variation of the temperature T and cross-linking p through the
th-ckness of the slab at each instant of time.

Stress and Strain Fields

It has been observed for themrosetting resins that near the gel-point the
time-dependent viscoclastic functions form universal curves if the modulus is
scaled by the equilibrium modulus and the time by the longest relaxation time 1tz
(Adolf and Martin, 1990). The critical regime where this theory of time-cure
superposition remains valid has been found to be surprisingly broad.
Conservative estimates show that above relationships are valid for most of the
post-gel regimc.

In order to take advantage of the time-cure superposition principle it is
"necessary to introduce a reduced time variable defined as

(t= f = C J(p(t') - p )4 dt' (10)
0T

where (1/c) is the proportionality constant in the expression (3).

Since tile in-plane dimensions of the slab are large compared to its thickness,
the stresses, strains and displacements in the regions away from the slab ends are
functions of the t and coordinate y, only. If the boundaries are free of stresses
and the dead weight negligible the only nonvanishing stresses (equal to each
other) are oa and oz. Using the same argument, the only non-vanishing strain
component is found to be c. Following an analvsis similar to one suggested in
Muki and Sternber, (1961) a constitutive law relating the deviatoric parts of the
stress component o\ and strain rate Ex can be written in terms of total stress ox
and total strain rate acv/Dt as

I o~

OX (y' 1) = 2G(Yx - X') (Y, d' (101)

0
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7-T

where G is the shear relaxation modulus of the material admitting additive
decomposition G = G_ + GR . The dependence of G on the degree of cross-
linking near the phase transition is defined by the expressions (2) and (4).

Similarly, from the constitutive relations between the hydrostatic
components,

2ay (y,t) = J3K(yX-X') [ {sy (y,t) - 3c*(y,t)} dt' (12)J ,.,y

0
where E* is the isotropic eigenstrain in the material point due to shrinkage and
thermal dilatation

E P-th-sh (13)

Before the emergence of the infinite cluster the freely moving aggregates
shrink without emergence of stresses. Thus, in a mean field approximation it may
be assumed that the stress generating shrinkage strain is directly proportional to
the degree of cross-linking above the level needed for the formation of the
infinite cluster

Ssh = Ef (P - Pc) /( - Pc) (14)

with ef being the final magnitude of the shrinkage strain. The thermal strains are
wdefined as

Eth = aX (T - To) (15)
with a being the thermal expansion coefficient for the material, while T = Tc at
the percolation threshold.

The rate of change of the eigenstrain is, therefore,

a -T__t) DT ,t) Ef yt ( )
at =o - (1-PC) t (16)

For the present analysis it will be assumed (as in Lee and Rogers, 1963) that
the material is elastic in hydrostatic extension/compression and viscoelastic in
shear. This assumption is supported by the observation that the bulk modulus K
exists before the phase transition and is, in all probability, not very sensitive to
the volume fractions of gel and sol. Thus, in the following expressions, the bulk
modulus will be taken as being a time-independent constant.

The final form of the constitutive law can be derived eliminating Ey from
(11) and (12)

t t
4 a'G(YX•)" a~t

Ox (y, t) + '-J f X' ,t)dt, - 6 fG(y,X-X) t'( dt, (17)
0 0
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As suggested by Lee and Rogers (1963), the nonhomogeneous integral
equation (17) can be solved numerically discretizing the time scale into finite time
steps ti , i=0,1,2 . n, with t1 =0 and tn = t. Once the shear modulus of the
gelling material and the eigenstrain are determined as a function of the position y
and time t, it becomes possible to compute the right hand side of the above
equation (denoted below as F(tn)) for each time increment. The left hand side of
(17) can be further manipulated into a more convenient form

2 ;
F(tn) - 3K [G(y'Xn-Xi+I)pi - G(y'Xn-Xi'I)pi.S~i =0"

Ox (y,t) 2 (18)I +* 3K + -G(y,0)pn,- G(y,Xn-X•n-l)Pn} )

where pi = p(ti) refers to the extent of the reaction corresponding to the time step
ti and G(y,t)pi is the modulus evaluated at the same extent of reaction.

Finally, since the change in the thickness dimension due to chemical
shrinkage is negligible, the slab thickness (2ho) is assumed, for simplicity, to
remain constant throughout the process.

"Illustrative Problem

I• ~ For the purpose of illustration the computations were performed for a
polymer slab made of Hercules 3501-6 resin. Following numerical values for the
material parameters were selected as representative for the considered boundary

;,•* value problem (Loos and Springer, 1983, Bogetti and Gillespie, 1989):
conductivity of the resin k = 0.167 W I (re.K), resin density (p) = 1.26 x 103
kg/m 3, specific heat of resin (S) = 1.26 KJ/(kg.K), heat of reaction (HT) = 474
KJ/kg, coefficient of thermal expansion ((x) = 7.2 x 10-5 /oC, final shrinkage
strain (Ef) = 2%, shear modulus of the fully cured resin (G-(p = 1)) = 1.06 x 103
MPa, bulk modulus (K) = 2.3 x 103 MPa, thickness of the resin bed (2ho) = 1.5
cm, constant for the cure kinetics (A0 ) = exp(21), activation energy of the resin
(Ea) = 80 x 103 J/mol. The gel point for the resin was identified as the bond
percolation threshold on a simple cubic lattice, p = Pc = 0.25.I,. The autoclave temperature was varied as shown in Fig.2 assuming arbitrarily
that tI= 1 hr, t2 = 3 hrs and t3 = 5 hrs. The initial temp Ti was 250 C while the
maximum temperature Tf was 1770 C. The constant c in (9) was estimated on the
premise that the reduced time variable (X) coincides with the actual time after
which the material is fully cured, i.e. when p=l. The parameter c obtained in this

manner was 3.16. In absence of precise experimental data the constant A,
characterizing the instantaneous modulus of the material, is assumed to be 1.
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Fig.3 Growth of degree of crosslinking with time

Fig.3 shows the growth of degree of cross-linking with time for points on the
surface and in the center of the slab. The rate of gelation is clearly much more
rapid near the center due to the higher temperature attained by the interior of the
slab in the course of the exothermic reaction. As a result the interior of the slab
gets stiffer much faster than the outer layers and consequently locks in higher
shrinkage stresses. It can be also observed from Fig.l that the final degree of
gelation in the central region is higher than that of the surface. The strength of
the fully cured slab, therefore, varies through the thickness in proportion to the
final degree of cross-linking attained.

1.2
i =- 1.5 hrs

1.0 t = 2.5 hrs

08.8 t = 3.5 hrs

0.6

4 t =0.5 hrs
0.4

0.0 0.2 0.4 0.6 0.8 1.0
y/lh

h0

Fig.4 Variation of temperature through slab thickness

The variation of the temperature across the thickness of the slab is depicted
in Fig. 4 at four different times. The exothermic reaction due to the cure results
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I
in a significant temperature gradient within the material especially while the
material undergoes phase transition from sol to gel. During this time the material
is subjected to a shrinkage strain resulting from cross-linking. Fig.5 shows the
variation of the degree of cross-linking (p) across the thickness of the slab. The
number of cross-links at the center of the slab increases substantially at some
critical time when the exothermic reaction taking place near the sol to gel phasetransition.

1.0=t 4 hrs 
}

0.8

0.6

0.4

0.2

t= 1 hr
0 .0 -

t ,
0.0 0.2 0.4 0.6 0.8 1.0

y/ h

Fig.5 Variation of degree of gelation through the slab thickness

The development of the viscoelastic stresses (ox) is quite rapid after the gel-
"point as shown in Fig.6. After reaching maximum value at t = t3 (when the
autoclave cooling is completed) the stress Gcx decay to an equilibrium value. After
sufficient time the stress ax stabilises resulting in residual stress.

1op 
v=O0

80 .h

S60-

40o

20

0~
0 2 4 6 8 10 12

time (hours)

Fig.6 Variation of stresses with time
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time resulting in residual stresses. It can be also observed from Fig.6 that the
stress at the middle of the slab (y = 0) is significantly higher than that on the
boundary (y = ho). This is a consequence of the exothermic heat generation
within the slab and the attendant temperature gradient observed in Fig.4. Fig.7
depicts the variation of a,, through the thickness of the slab and at different
extents of time. Due to the presence of temperature gradient and the gradient in
the degree of cross-linking through the thickness of the slab, there is significant
gradient in stresses as well. It can be only conjectured at this point that
microcracks originate at the center of the slab when the magnitude of the tensile
stress exceeds the current strength of the gelling material at that point.

100
8O()

i = 6 ,ir

S60-

• 40

20

0.0 0.2 0.4 0.6 0.8 1.0

Fig.7 Variation of Stresses through the Slab Thickness

SUMMARY AND CONCLUSIONS

The objective of the present analysis was to incorporate the critical
characteristics of a cross-linkino thermoset material in the computation of the
viscoelastic stresses during its curing process. The objective was reached by
formulating an initial boundary value problem for the spatial and temporal
curing of a slab of resin exposed to specified autoclave temperatures. The stress-
strain law was formulated using time-cure superposition and relaxation
integration equations in terms of cure-dependent elastic moduli and shrinkage
strains.

Computations indicate that significant tensile stresses are generated shortly
after the critical point of sol-gel transition. These stresses result both from the
chemical shrinka ge as well as thermal shrinka ge. The magnitude of stresses in the
actual process is observed to be higher than that of the residual stresses.
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OF COMPOSITE MAT11r:P1A1L_
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Temple, Arizo'na

* ABSTRACT

In an attempt to explain the phenomenon orf ibei cluscir~ l~f tric oe :CI~iiiiyrylllds li.ir-iber iolx
through an array of rigid cylinders is investigamlld 13uc0% :.',i~i o a ni:,Vul::ir li~d a Oij':tly :Wer,
turbed array of cy linders. are studied. In particular, the forces vxt~ned on Vic cylindekrs Hythe luiC!
are derived for both cases and a stability =Waysi:s iis conduimil: tu predic trw mrtrri cf the ar- iy,

INTRODUCTION

The design of a manufacturing process that lead to carrvposilic matera~s possessing op mnaý
properties represents an important technological challenge, . 1)r of the diff~icultics itmat a~re fe
encountered is the luck of uniformity of the distribution of floerill in the arirlx This ptneric -'rob.
lem which affects both short andl continuous fibers composites oiriginates in particulir in the tiovw
of the resin through the arrangement of fibers. Consider for example the process of limpregnation
of thermoplastic composites which starts with the introduciion of a polymeric matrtx into a fiber
iow. As a result of heating, the matrix softens antI starts flowing into tnc spaces separatirli the
adjacent fiber tows. While flowing through the "channels' formed by the adyliceril tows the
viscous mass exerts significant pressures and shears on the tows which may cause both their
flexure and rigid body displacement. This process may lead to concentration of fibers minto small
areas. or clusters, and to the formation of matrlix-rich domains which arc camast devoid of hocrn.
One of the possible explanation of this phenomenon associates the fiber clustering with an nitiid
irregularity of the array of fibers. The goal of the present investigation is to test the- validriy ot
this mechanisin. To this end, the motion of a fluid (the resin) through an array of cylinders (the
fibers) will be investigated. In particular, the present study will focus on the dretninination of the
change in the forces exerted by the fluid on the cylinders a;i they move away froli their intially
regular arrangemient. Finally. these results will be used to lest the~ stability ot the en-tirc array ot
fibers.

THE FLOW EQUATIONS

The fluid flow past an array of cylinders hw; bken the %object of a luilr numbher of both
theoretical and experimnental invest i gatlions. The two luniiting cases% of ;a fully turbulent flow.
corresponding to a very large Reynold nuinbcrilsee Chen er al. (1990). Conca. et iA. (19901) anti
references therein), andi of a creeping motion, modeling to very low Res'nolds number situation
(see in particular Tanmada andi Fujilkuaw (095%) Mltviri H0510. Hasirnomn (19591, Kirschm andi
Fuchs (1967). Happel andi Brenner (1973). White (1974). Drumnmond and Tahir ( 1984) andi refer-
ences therein) have Iheen epeci~l.0y emnphasized. In the context ot the rillnufaictilring of thenmo-
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pla.stics it is found that i cv'It ~ n v in iy a h luf i, .r,::v1;~ttl:: vi\:c'csir) v, iiJ i.. I -,a
icr of the fibers, .D lad to a very small Reynolds nuLJt hr!

'The theory' of linear crei ng flows thus rcpreeit: anI ~~i~i-Priii dti trriiiit ~wcc 1.1 ile I r C!, I' 'cllt

'The derivation of the hiow equations correspondnj i il'i) he liZrtJitir c;L; cif ;1 161! !;tT11 PF

nol ds nurnber is a classica. topic of fluid ricecharti:;.ii : : aJl]ir 'ini t ý' ccki
showed that the continuity and momentuam eqLuations rec li u:i:,I::)'

4Jri V -D

and

where Vand P are the vitlocity and the pressure rclýste;pcctivl Y. Fu i 1-r. i!:5f:2 sy!I Li

P I ) V
where p is the mass density of the fluid. Introducing thic t:iurii ic ;' vector )I

it is readily shown that Eq. (2) and (3) can be rewrittcr in~ t1ire iorni

16)<
N and

W 17

A series of investigations (see VIhiie (1974) and Ha~pIpel anti- Brenne li 9 f dewtiiko have
shown that Eq. (6) and (7 ) lead. in the ca.se of the thrir.'*Ir-:1rensie'nal llowi art.. immiersed
bodies to accurate estimates of the flow characteristtcs, ir, particular the drag and Iiforci' m, 2 a
large domain surrounding the body. in the far field. hwivr Stokes' cquairion nrcirit incrnia
trsoio oha pare flow neglgibe.s was rlinital assnid in.C k~thederivato ofEq.r~ ( ii th no
trso thutio ofpare not n roblgbe.ms wby retlyn onuEq. ini Ltned d briv tin of jdxý it. is noh~. te

* ~always possible to find a steady solution in Eq. (6) and 7P) that also satisfies the boundary condi.

tin ntesurface oth rir oy(osicodto)adn0if-il These'Iweaknesses of Stokes' equation have led Oseen to cons~erve the inertit terni U 7 in the formu.
lation. leading to the following steady momentum equationi

pU +-~' (8)

The above relation, at the contrary of Stoker* equatio, ltad!; 0 a unifomi.1y valid ipproximlation
of the tharee dimnersional fluid Hlow around an immtrreci body. Further, at admitsicately two
dimensional solutions that tiatisfy the required boundar conditions on the iinrncr,,cd body and in
the far-field. Notwithstanding these advantages. it should be noted that Stokci anid Oscen's
equations. Eq. (7) and (8). Nith represent zernth order approximations of' the Navicr.Siokcs equa-
tions corriesponding to a low Reynoldý. numbetr.

Thus, it cananot in generi be inferred that the use or Eq. W8 will 1ead to estimates of the
forces acting on lthe body thatt are more accurate than the cornesrxinding approximcatuions derrived
fom Eq. (7). (Happel and Brenner. 1973). In Ohe contex of the flow through a Perturbed array

of fibers, this observation indicates that the %implest of the two momentum equations, that is Eq.
(7). beP. used provided that it yields% an acceptable flow field. The lack- of a fluid only "far field"
and the existence of a Stokes' creepint flow through a reg~ular arrangement of cylinders (see
Hasimoto. 1959. Sangani and Aeriv. 1992. Drummiond and Tahir. 1984) su'ti that Sitokes'
paradox wHil not be present. Consequently. Eq. (7) will indkeed yield the required low Reynolds
number approximation.

ASSUMIED SOLUTION

In the case of a three -dimenlsiona I flow, the vorticiry vector can be written in the form

[ o. 0.(9)
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with

~L _ __(10)

where u and v denote the components of the velocity in the plane of motion,
V 0[.,.0]. G[I)

Introducing the polar coordinaites (r.0). it can be shown that the solutions of Eq. (7) and (9) admit
the representations

(12)
where •, C... D .. •.mat... and F,. F,. F,. F4 arbitrary constants. The single.-valuedness of the
vonicity component w. under a rotation by an angle 2x around the :-axis requires that the
coefficients F, and F, be identically zero. Further, imposing that w.. vanish at infinity, ra., leads
to the condition

C, a CJ a 0 (13)

and

D..WE. ao.,M a... (14)

Finally, the real character of the vonicity vector for all values of r and 8 requires that the con-
stants a, and C,. be complex conjugates of each other, or

C. a 8.. m .... (15)
Under these conditions, it is found that w. can be expr:ssed in the form

S..- . -r .- a- .-r- e (16)
w here[

w =.r Ys our e". (17)

"The next step of the an~dysLs consists in the determination of the velocity field V' that corresponds
to the vonicity component w.. .Eq. (16). This computation is greatly simplified Gy introducing first
the complex velocity it as

and noting that __i -

(19)

where the last equality results from Eq. (2) and (10). Then integrating Eq. (16) with respect to r
yields

W . L ¶'f[- ~ 1 1+8 *8 1in +BI
Spo(20) I

where A,. ron-... an arbitrary complex constants. Note that the term L.. iEln: is required to pro-

duce single-valued velocity components u and Y.
The singularity displayed by the flow field, Eq. (20), at : -0 is clearly inadmissible unless

that point does not belong to the fluid domain. More precisely, it can be argued that this point
must coincide with the center of one of the fibers. Synmmetry considerations dictate, however, that
no one cylinder have a privileged role in the analysis. Thus, there must be a singularity of the
flow field. Eq. (20). at the center of each fiber and (see also Tantada and Fujikawa. 1957, Drum--
mond and Tahir. 1984)

Wa W., (21 a)
17q
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where

r- (__ F-1- I _____

')* 2 • - - ). (,,-t)(.*--r,)'- -S

, I-s• __. ___

"+ in (21b)
I S. I (: -. q)"

In the above relation, the double summation over the cylinder indices p and q extends over the

entire array and s, denotes, as in Fig. 1, the complex number associated with the position vector

"of the fiber in the p' column and the q' row.

The boundary conditions, to be described next, will provide the necessary equations to com-

pute the values of the complex coefficients AZ and B• corresponding to each of the fibers (p,q),
thus completing the determination of the velocity field in the array. Once this information is

available, it is quite simple to determine the pressure field and the forces extended on the
cylinders. Specifically, note first from Eq. (3) that

V- =W (.2 -- -,=2 - (22)

Then, using the identity

V2W -4 a-2W (23)

and integrating Eq. (22) over , it is found that

l l P =2 P a- + = i P t + () (24)

where X(E") denotes a function of such that the corresponding pressure field P is real. Finally.

the complex force acting on the fiber pq can be evaluated as (Miyagi, 1958)

F"' = FIN + i F= (iUp + P)d: (25)

where the notation f denotes the integral over the contour of the circle pq. Combining Eq. (24)

and (25). it is found that

F= 4 i gt) d: + 2 d J w d: = 4 i a B . (26)

l ' NO-SLIP BOUNDARY CONDITIONS

To give rise to a bonafide velocity distribution, the constants AZ"' and BZ must yield vanish-
ing components u and v on the exterior surface of each fiber. Denoting by a the common radius
of the fibers, it is then required that

SW = 0 for =s,, +a ' (27)

at every angle 0 and for all cylinder indices p and . Combining Eq. (21) and (27) and expand-

ing the terms (,, -,, +a e')- and in is,, ,N +0 e" I n the form

(.,, -s , + a e'*)- (.t,, -sj l r e'] for (r.s) (0.0)

(28)

and IP I P () __

In ',- +a ' I e"

+ -' Ie for (r.s),t(0.0) (29)

yields a Fourier-like expansion of tv involving the powers of e;*. Since the functions e" form a
basis over the domain ie 10.2nl. it is necessary. to satisfy Eq. (27), that the coefficient of each
power e" in the expansion of w be set to zero. That is.
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A:':

AZ "* 1 , ". I j,~ _:,, ,

""--, -
, 1 " 1

21. 1i 

-t)

÷ 2. T • -J_7 4,-J..-,,' I''"

0'g
£...,, - 2-:-

(32)

3- 
- 4 

A'"|/i ,i2i i1.r,.ir

2- i_ I -a " _ -TM "2 i , M.-,) (r" - ,,j-N
I 4'$ ', ) A ," 

(34)4+ +q -- .÷ Z -•- +;..-.- (33

FLOW PAST A REGULAR ARRAY

AL~ it wilb eni hetscintat the dletermination of the nlow past a perturbed aj-rv Of

cyl wind er require the knext sect of th hofsodn soiution for a reguilar arrangement. The

lattersfo il canubrs et er mow ncdg e itfher byrresloning .... tepwer series expressions derived by

aray iisepcted that the cylidr al hav an idnia"feto h ow reuvi .ta

Nr ay 
8t fo allc p... . . ... .. . (35)

1 a n d- 

. ,6

AV-A: 
forall P - 4q WWm 

(36)

for some complex numbers A:• and 8:•. Then, introducing Eq. (35) and (36) in Eq. (3l)-(34 .) yields

th olowing linear system of equations"
4. ), C -0-, + ( -Fr00

A:, " 
, 

• " , -

"1" G + - 1 1(0.0,., (3"7)

*If

FA 
A4-AY

wi b e t nex , s --tion÷tth o ete-,nt .° o ,he of

iosr



+ a -i17 F 1(,()i+ a FTO.O) + Z- a F. (0.0) + -- aF. (0.0W=O (38)I

ar 2 i -.

A,0 8, f,

,,t ,o B" ,2 " s2 ma°

A,( B,0-, ( -,,, F o- -.. a +

a, a,-- 2 2i 2i .. Ftn.I= 0 (39)

(40)

In the above equations, the symbols F-,0.U) and C.. (0.0) have been used for brevity to designate
the following series*

r..t0.0) Xn I ~=.... (41)

and

• ,, + , -~- m F2....0(42)= O.
;:M (42)

where the summation over the indices p and q extends over the entire array with the exception of
the cylinder 00. It should be noted that the coefficients F..,O) and G,.0(Oh b are affected by conver-

gneproblems. In particular, F4(.0) and G3(0.0) are indeterminate: their values depend on the
order of summation. Drummuond and Tahir (1984) have resolved this issue by using symmetries.

[;For the olwigseoeries ta

!or th emtista hey considered, (unstaggered array, triangular and square staggered

IT. obtained by performing first the summation perpendicular to the mean flow.
The determination of tlcofiensA'and 8,* requires afnl cln odto pcfig

for example, the mean fluid velocity across the array (see Drummond arid Tahir, 1984, for
details).

"a I

FLOW PAST A PERTURBED ARRAY -a!;.

The determination of the fluid flow past an arbitrary irregular aray of cylinders can be T
obtained as in the case of a regular arrangement, by relying on Eq. (30)-(34). Because of thle lack
of symmetry in the positioning of the fibers, the simplifying assumptions given by Eq. (35) and

I,(36) will however cease to be valid and a severe increase in the level of complexity of thle
analysis will result. In this respect, note that an investigation of the stability of the array requires V
only the knowledge of the fluid flow past a slightly perturbed array thle cylinders of which are
located atthe points V

N- + (43)
In this relation, the symbol si denotes the position of the cylinder pq in the regular array while
8s, represents its small misposittoning. Introducing equation (43) in Eq. (30)-34) and lineaizing
the resulting relations provides a first order approximation of the forces being exerted on the
cylinders as a result of their motions. Retaining only the linear term in 6s.e it is found that the
principle of superposition holds; the forces resulting from the myspostton ing of two or more
cylinders equal the sum of the contributions corresponding to each of the displacements sgr as if
they were acting alone.

This observation implies that the analysis can be conducted by considering that only one
cylinder, with indices p -q .0. is not in place, that is

=i,,-0 fortp~q) -*(0.0) (44)
Then, the coefficients A:' and B, can be expressed in the form 4M

A =A. + &AZ (45)U
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" 0.. + (46)

where &A:' and 6B: are the small perturbation temis corresponding to the mispositioning 6s.,.

Further. to account for the finite memory of the fluid, it will be required that

&A4.• 0 as p u•Jh'r -q -± (47)

and

SBZ
1 

-. 0 as p andf,,r q - ±-. (48)

Letting r and/or s tend toward in6nity in Eq. (30), it is readily found that Eq. (47) and (48) imply
that

_ =0 (49)

and
68V . -. (50)

Even with the above simplifying assumption, the solution of Eq.(30)-(34) appears to be quite

cumbersome since there exists in general a different set of coefficients &A' and 6BS' for each

cylinder pq. To this end, note that every double summation term appearing in Eq. (30)-(34) is in

fact expressible as a discrete three-dimensional Fourier convolution. Thus. it can be expected that

the solution procedure for the coefficients &AZ, and 68 be greatly simplified by introducing the

Fourier transforms
•.(oo• =T. Tse.,, r" r"(51)

and
-, e &4 eT , *. (52)

In fact, combining Eq. (30)-(34) and (43)-(52), it can be shown that
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+ Ina: + L 0.0) 1 F__ ( ,j ; .,0,.,0 - .61 •0.t6 . =

""SW - 2 a F,(0.°) - 2 a F,(O.) + G,,(OA) + C:(0.0)j

-- I &,,A2 [A...0(e. + (-I)' F,(..,0.0) + 9 ,.-[ [F,(e.,O) +,(.0)

-- & .[G_6(0.0) +(-)'G.,.00) - a (m +1) ..,e.) +. (-I)' ,(0.0)

2 ii
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a' 8-40) bs0 W + (61 __O) 7

+a2~ J&,,,Ar+iI F _ (0.0)(-I +"~ F,~,(.t)-a'- IMF,(.o(-'F,(j(4

2 i 2 i

-af•B ,r(.,) +. e,,) + .(+1-0.0

fr-a• .. <m.- + (-1)' (55) 1Z
L 44itoJ

frB_ [17.(.-) 8 f2 W,____
-j- ,428.+ - - F,(-O,-O)~

• ,:I_ 12O¢) F...,t--e,-s) -. + F- 2,-
a a20) 22.,i77 2i 2• 2ia. "2 .•

to " m m j2  F.. - (-Wi' Ff (56)

and

&A, (0.0) +a',.__)- I_
7 2i . ' (rn-I) 2id.)

(-a):+ +l a' !m+ I) 4.-- + (-I0-)(57)

where

"and Z -.

S ..... i J.04o,)= C"1 e e " 1. 2.. (59) •

0N+ ' " e" (60)

I F

Note in Eq. (60) and (61) that the tenns and In s,, IIare ignored if Ira=W.. Furher, the con-
vention on the order of sunu ation, alre'cty " liscussed in connection with the flow past a regular
array, is also selected here. Finally, note from Eq. (50) and (51). that

B i(0.0) 0. (62)

STABILMY ANALYSIS

The solution of Eq. (53)-(57) provides a representation of the coefficients &BrV and of the
associated function &8,(8.0) in the form

88•= +1N• (63)
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Note in Eq. (60) t and 61 h,, I . we ignored if Iri)=on.O) Further. the con.

vention on the orde'r of sununafion. "areI(.y discussed in connection with the flow past a rceular
ray, is also selected here. Finally. note from Eq. (50. and C51). that

6 8 g(o.0 ) = 0. (6 2 )

STABILITY ANALYSIS

The solution of Eq. (53)-(57) provides a representation of the coefficients 68V and of the

Lssociated function 68 8(e.o) in the form

a s,= , + 11,- (63)
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and
8,(.6ý ,48.0) &S. +0(8.0) ( (64)

The variation of the force exerted by the fluid on the fiber rs due to the motion of the cylinder uo
can thus be expressed as

6F" -4 i nrp 68'1' - (4i i Ocp")6 ,e + ) (4i t + )4 " f (65)

Relying on the superposition principle discussed in the previous section, it is found that the varia-
tion of the force exerted on the cylinder is due to the motion of all cylinders. is

S, - (4 i &P4 +( • i (66)i i

Separating the real and imaginary components, it can be shown that the above relation can be
rewritten in the form

St/;'"""'s!',"-"j(67)

where
as, &V, + i 6:1"1 (68)

f V 4 r :,,riat - ) + /,, fY"R ) (69)

A L

f•. "4i• P RrtiY') te(•,dN)] (70)

If1 .•- •p [aeg(W" ) ÷ Ig(uN)] (72)

In the above relations, the notations ing(:) and Re.(:) designate the real and imaginary paris of a
complex number :.

It is seen from Eq. (67) that the fluid act as a "series of springs" since the forces are propor-
tiolnal to the displacements. For stability, the stiffness matrix must only possess eigenvalues with
positive real parts. These eigenvalues. denoted in the sequel by X and their corresponding cigen-
vectors [& , &, . . satisfy the following equations

For all r anti s, note that the left-hand side of the above condition represents a discrete two-

dimensional Fourier convolution. Thus, introducing the Fourier transfonns
&V (0.0) B,T "& e'r" e'•* (74)

r It

. - 6., e=r* e"* (75)

I ~ ~ f Or"~o e : " • n 11 i [ae~o) + two.)- -. o - t-.)] (76)

and similarly
f :W0.01 2 n P .•<.)-ct." t-.o )-.0 (77)

f 210.0) - -- G, ) + J3[0.0) + +•-.•)] (78)

f =0. 40 ) [.) -p P(.0) - ,4,O.-) + Ie.--..)] (79)

it is found that Eq. (73) reduces to the 2x2 eigenvalue problem

f& .(- .o . ,O.,)J = - " .
The eigenvalue X must be such that a nontrivial solution of Eq. (80) exists. This is achieved when
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NUMERICAL RESULTS

In order to illustrate the above theoretical development. two square arr'ays have been cow-

sidered; the first one is unstaggered with a distance between fibers of qJ2 while the second one is

staggered at 45" with a unit distance between fibers. In order to numerically simulate the specific

order of summation associated with Eq. (41). (42) and (58)-(61). the domain of the indices p and

. was selected to be (p.4 I1-10. IolxI-5tK)U.StI)o l. A good matching with the theoretical results of

Drummond and Tahir (1984) was obtained.

Shown in Fig. 2.6 are contour plots of the values of the cigenvalues corresponding to fiber

radii. 0.1, 0.2 and 0.4 which reveal that the array is unstable for all of the cases considered. Note .-

that the magnitude of the most negative eigenvalue increases as the fiber diameter increases, or .ft.

equivalently as the density of fibers increases. F.,
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nolds number Raow through an array of rigid cylinders (modeling the fibers) has been investigated.
I Specifically. the present study emphasized the determination of the forces exerted by the viscous

if ~fluid (the resin) on the cylinders for an arbitrary aray. These results were then used to study theI ~stability of a slightly imperfect square array of fibers. The stabiliry analysis reveals that
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(1) within the assumption of low Reynolds number, the stability of the array of fibers is
independent of both the flow velocity and the fluid viscosity.

(2) the array of fibers is unstable, that is. small deviations of the fiber locations from a perfectly
regular square, staggered or unstaggered, array will lead with time to a disordered arrange-
ment of fibers.

(3) the magnitude of the most negative eigenvalue which quantifies the rate at which the
disorder grows. increases with the concentration of fibers.

(4) the value of the most negative eigenvalue and the corresponding mode of instability do not
appear to vary substantially with the staggering.
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ABSTRACT

The objective of the present two-scale model describing the evolution of the connectivity,
stresses and temperatures in a polymerizing thermoset slab is to estimate the damage incurred
during a typical cure cycle. The mean-field (macro-scale) part of the model couples equations
of heat transfer, rate of chemical reactions (governing formation and rupture of crosslinks)
and visco-elastic deformation in the slab. The micromechanical part of the model explores

p, the influence of the disordered microstructure on the stress concentrations and rupture of
"overloaded bonds. Two parts of the model are intrinsically coupled through the fraction of• existing bonds.

INTRODUCTION

Mechanical response of polymer matrix composites, and ultimately their strength, is strongly
affected by the residual stress and submicro- and micro-defects induced during the curing process.
The magnitude of residual stresses and the size of micro-defects depend on the chemical process,
thermal gradients and stresses developed during the polymerization. Consequently, optimization of
the curing process, i.e. minimization of the performance limiting birth defects, is undeniably an
important task with far reaching consequences. However, the inherent complexity of theI; phenomenon, coupling exothermic chemical reactions, heat transfer and the damage evolution
"resulting from the attendant emergence of the stress and strain fields, defies easy solutions. The
complexity is augmented by the disordered and evolving (time dependent) microstructure of the
"polymeric matrix and its effect on the local fluctuations of stresses.

S~A majority of the already existing phenomenological continuum models are, with a varying,
degree of rigor and success, focused on the determination of the mean-field (volume averaged)

estimates of the macro-stress and temperature. However, the mere fact that a resin specimen survived
the curing process in a single piece implies that the (average) rupture strength of the specimen
exceeded the mean-field curing stresses at all times. Yet the inevitable presence of the ubiquitous
microcracks, attributable to the chemical and thermal shrinkage, is a convincing testimony to the fact
that the stress fluctuations did exceed the rupture strength of the polymer network locally at some

A time of the polymerization process. Indeed, the gossamer architecture (Zallen, 1983) of the newly
formed gel backbone is replete with defects of all sizes and shapes. Hence, substantial stress
concentrations must be expected during the early stage of the curing process as a rule rather than as
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an exception. Further evolution of the damage nucleated just beyond the sol to gel transition can*
subsequently occur as a result of thermal shrinkage during the cooling phase of the curing process
(Guz', et al., 1988).

The objective of this study is to provide a first stage in the development of an analytical
model describing, ever so roughly, a set of coupled physico-chemical processes referred to as
polymerization. More specifically, the analyses are focused on the competing mechanisms, of
chemical reactions during which the crosslinks are formed and the mechanical causes of crassliakruptures. Primary interest of this study centers on the influence of these processes on the mechanicaperformance of the polymer and its residual strength. In view of many assumptions and

simplifications, introduced into the model at this stage of its development, no pretense is made with
regard to the numerical accuracy. Rather than fitting a particular curve for a particular resin
subjected to a particular curing process, the primary focus of this study is placed on the eplication of
the dominant trends in mechanical behavior during the polymerization process of a generic
thermoset resin.

KINETICS OF THE POLYMERIZATION PROCESSING
THERMOSET RESINS

Polymerization is a complex process during which the colliding polyfunctional monomersi•t 'i react by crosslinking and form geometrically irregular three-dimensional networks. On the specimmm
or macro-scale the material during this process changes it phase from a viscous fluid to a glsy
solid. On the micro-scale the same process is observed as a change in connectivity as the colliding
monomers crosslink into m-mers. The exothermic reaction of crosslinking is accompanied by
chemical (cure) shrinkage.

The early models of polymerization can be divided into two classes. One class of these
models emphasized diffusion limited aggregation. The mean-field description of the m-mer growth
model is, in this class of models, based on the Smoluchowski kinetic rate equation (for a lucid
discussion of these models see Martin and Adolf, 1991). Despite their success in replicating the time
dependence of the m-mers these models do not involve spatial correlations (shapes of m-men and
the spatial distribution of microdefects). As such these models am of limited use in the present case
in view of the objectives of this study.

The second class of models (de Gennes, 1976, Herrmann, et al., 1983, Leyvraz, 1990, etc.)
simulates the polymerization process by a bond percolation on a lattice. According to this model
monomers are placed (actually fixed in nodes of a selected lattice). The bonds are subsequently
allowed to form in a random sequence until the backbone (infinite cluster or gel) emerges when the
fraction of formed crosslinks p reaches the percolation threshold Pc. The geometrical form (or type)
of the lattice depends on the functionality of the monomers, Though deceptively simple and
conceptually alluring, the model, nevertheless, has at least two deficiencies. Firstly, monomers are
rather mobile at low levels of the connectivity p (prior to the formation of the gel) and can hardly be
modeled as being fixed in nodes of a lattice. Secondly, the distance between monomers are measured
in Angstroms. Consequently, the defects in these monomer lattices (measured by multiples of
distances between monomers) are submicroscopic and, therefore, much too small to be of concern as
stress concentrators or potential nuclei of micro-defects.

Both of these shortcomings were resolved in the polymerization kinetics model suggested by
Martin and Wilcoxon (1989). According to this model the early stages of the polymerization process
are dominated by diffusion limited aggregation of mobile monomers into nodules (or aggregates).
This aggregation occurs simultaneously at many points within the melt. The growth of this nodules
is governed by the Smoluchowski rate equation. These nodules grow exponentially with time until
they fill the entire space and become practically immobile. At this point their radii become equal to
the spatial correlation length 4 (proportional to the probability that two monomers, belonging to the
same cluster are separated by the distance r).

The second phase of the polymerization process, according to Martin and Wilcoxon (1989),
is dominated by crosslinking of virtually immobile nodules into larger clusters of nodules. Hence,
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4 considering nodules as "renormalized" monomers fixed spatially into lattice nodes, the second phase
of the polymerization process may, indeed, be simulated as the bond percolation on lattice.
Assuming that bonding will take place only between the closest neighbors the cubic lattice represents
both the simplest and most appealing choice. The nodule diameter is typically between 0.02 and 0.08
gm (Mijovic and Tsay, 1981, Martin and Wilcoxon, 1989), (i.e. at least two orders of magnitude

4, larger than monomers itself). Consequently the voids and defects in the lattice will be measured in
micrometers. As the nodule clusters become larger, an "infinite" macromolecule (gel) emerges

7 spanning the entire specimen and endowing it with an initially minuscule shear strength (or more
rigorously specimen shear stiffness). The spanning gel is still encapsulated by the surrounding
viscous fluid referred to as sol. The stiffness is the second derivative of the Gibbs' energy with

7 respect to the stress (Krajcinovic, et al., t.a.). Thus, the described sol to gel transition can be
classified as the second-order phase transition. Shear compliance ior its inverse shear stiffness) of
the specimen exhibits singular behavior at the sol to gel (or phase) transition. The fraction of the
existing bonds between neighboring clusters will be labeled by p and the percolation threshold (at
which gel emerges) by Pc. Physically, the sol to gel transition is a transition in connectivity from the
short range connectivity of isolated nodule clusters to the long range connectivity of the gel. In
defining the characteristic length the conventional spatial correlation function 4 must be replaced by
the connectivity correlation length R, defined as the z-average cluster radius.

The stresses attributable to chemical shrinkage are negligible prior to the sol to gel transition.
As long as the nodules may move as rigid bodies the stresses associated with shrinkage of chain
links connecting individual monomers cannot be substantial. At the percolation threshold p = Pc
both the stresses in individual links and the strength of the polymer are equal to zero. As the fraction
p of the bonds connecting adjacent nodules increases beyond the percolation threshold Pc both the
stresses and the strength start growing. The average (mean-field) stresses i depend only on the
lattice connectivity p and temperature T. They can be estimated using appropriate mean-field
models (Martin and Adolf, 1990, Mallick and Krajcinovic, 1992). As already suggested, the mean-
field stresses Z should at all times (and all p between Pc and 1) be smaller than the specimen
strength if a polymer is to survive the curing process.

However, in the phase of the curing process just beyond the percolation threshold the gel
geometry is very irregular, i.e the lattice is inundated by voids of all sizes and shapes. The attendant
stress concentrations should and do exceed the mean-field values by an order of magnitude and
more. These local stresses can be sufficiently large to cause rupture of some of the bonds subjected
to largest stresses. Rupture of these highly stressed bonds relieves the stresses but at the same time
represents the nucleus of the defects attributable to the curing process. In extreme cases the macro-
failure may be attributed to these "birth" defects.

The classification of the sol-to-gel transition as a second order phase transition (see Zallen,
1983, Stauffer and Aharoni, 1992, etc) is not only of academic significance. Much more importantly
this means that the process of crosslinking of nodules can, indeed, be simulated by the bond
percolation problem on a lattice. This in turn means that this apparently random process exhibits
certain universal trends robust to the details of microstructure and actual crosslinking sequence.

The universal trends of the sol-to-gel transition are reflected in the universality of the
crosslinking level p = p, (where p is the fraction of the crosslink, or the probability that a given
crosslink exists) at the percolation (connectivity) threshold. Additionally, the singularity of the shear

compliance at the percolation threshold scales as Ip = PcIr (Martin and Adolf, 1991). The shear

compliance is the order parameter since it exists only for p > Pc. Also lp = pcJ is the proximity
parameter. The scaling exponent T depends only on the dimensionality while the critical
connectivity at the percolation threshold pc depends on the dimensionality and the coordination

number (number of closest neighbors) of the lattice.
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ANALYTICAL MODEL

Mean-Field Model

According to the present experience the thermosetting resins such as epoxies can develop
significant stresses during cure. These stresses principally arise from the shrinkage caused by
chemical reactions in the material (Rozenberg and Irzhak, 1991, Korotkov et. al, 1991, etc.). A
number of experimental and analytical studies have been devoted in the past to the estimation of cure
stresses in polymer matrix composites (Hahn and Pagano, 1976, Loos and Springer, 1983, Bogetti
and Gillespie, 1989, etc.). These studies focused on the formulation of continuum phenomenological
models needed to determine the evolution of the elastic modulus of the gelling material with the
degree of cure. In reality, the visco-elasticity of the crosslinked polymers is much more complex
than assumed in these models. The viscosity can be traced not only to the changing connectivity p
(loosely related to the degree of cure) but also the dynamics of the polymer chains (reptation, etc.)
within the network. However, since the incipient gel is a self-similar structure, a change in the
degree of cure essentially results in a mere change in scale of the cluster size. Thus, with a suitablerescaling of time, it is possible to derive a universal relationship for the time-dependent viscoelastic

behavior of the curing polymer referred to as the time-cure superposition principle (Adolf and
Martin, 1990).

To illustrate the salient aspects of the problem consider a polymer slab of constar't thickness
2ho infinitely extended in the (x, z) plane. The surfaces of the slab y=±ho are stress free and
exposed to the temperature (controlled in the autoclave) which does not change with respect to x and
z coordinates. Accordingly, both the temperature and the mean-field stresses are functions of the
time t and coordinate y (defining the position across the slab thickness) only. Extension of the model
to more complicated geometries is conceptually, if not computationally, simple.

The heat conduction problem is governed by the well known partial differential equation
(Loos and Springer 1983, Ciriscioli and Springer, 1990, Mallick and Krajcinovic, 1992)

The second term on the right-hand side of (1) is the contribution of the heat liberated in the
exothermic reactions (crosslinking). The density p, thermal conductivity k and the specific heat S
are assumed to be constant (independent of the degree of connectivity and temperature) for the
duration of the process. Also, HT is the total exothermic heat energy generated during the course of
the reaction.

The differential equation governing the rate of the change of bonds in the percolation lattice
is often concealed in the literature as the equation of the chemical kinetics (Kenny, 1988, Mallick
and Krajcinovic, 1992, etc.). However, in most of these cases the rate equation is not complete.
Change in the number of bonds connecting nodules, occupying the sites of the lattice, results from
the competition of two simultaneous chemical processes. One process, typically considered in the
literature, consist of the formation of bonds through chemical reactions between two adjacent
nodules. The second process, often neglected in ventures of this kind, consists of the rupture of the
highly stressed existing bonds.

Assuming the considered chemical reaction to be of first-order, the rate at which the bonds
form must be proportional to the number of potential sites at which they can form. The total fraction
of these potential sites must be equal to the fraction of the missing links (1 -p). The coefficient of
proportionality reflects the fact that some of the collisions (occurring between two monomers with
inadequate kinetic energy) will not be effective. Thus, the proportionality factor (rate constant) must
be defined as an exponential function of the activation energy U0 and temperature T leading to an
Arrhenius type of equation. The rate at which the bonds rupture presents a less enjoyable task since it
also depends on the unknown stress U in the bond. The rate at which the bond rupture must be
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Nt where Nt is the existing and N the total ;'
proportional to the density of the existing bonds p = -•- -
number of bonds in the lattice at p = I. Thus, the total change in the density of bonds is

S= • Ao exp(_ Uo 1•(1_ p)_ •1• Ao exp(_ Uo - •./l i.i

[ to [, kBTJJ i=lN[ to •, kBT jj (2)

In (2) to = 10"13 sec is the period of free thermal vibrations of an atom, kb = 1.38.10-23 J ]°K :: • :
is the Boltzmann's constant and Ao is a rate constant for the reaction. The bar above the symbol • '•

..':"•: denotes average over the (x, z) plane. The quantity can only depend on y and t. The sum in (2)is ii*•

:•,• taken over all existing bonds Nt. The basic problem with the equation (2) is that the stress in the i-th !i!i
.!i link cri may, and as a rule will, substantially differ from the mean-field estimate •. Assuming that ....

;i•i all links which will rupture in a given instant of time are subjected to the same (high) stress o"i • q• i•-•
Swhere q is the stress concentration (or overload) factor the differential equation (2) may be recast •.-

•"- into a more palatable form •?

•: at Lt* •, kr)j Lto L •*J :j

{' The coefficient •,(often referred to as the activation volume) embodies the bond stiffness and the
, stress concentration factor q. The accuracy of the expression (3) can be expected to be quite good as

• the connectivity p approaches unity. However, the stress concentrations will be quite severe in the
:• period during which the emerging gel is of very irregular geometry.

"•; Since all slab boundaries are free of stresses and assuming that the dead weight is negligible
:!:•i the only non vanishing macro-stresses (equal to each other) are •x and •z As shown in (Mallick

•: and Krajcinovic, 1992) the constitutive relationship of the material relating the average (mean-field)
Sstresses and the rate of change of eigenstrains • * is

'-k
.. •. t • l -- *.•i "ff x(Y t)+ 4"•'f °3G(Y'Z - Z )-•x(Yt,) = -6 f G(y Z- Z )O-• t" (4)

' 3Kao °3Z "Jo ' Ot"

.a-, where G is the cure and time dependent shear modulus and Z the reduced time variable defined on i•,
:•,• the basis of the time-cure superposition principle (Adolf and Martin, 1990) i i•

S .... o
:[;: In (5) c is a constant. Furthermore, in (4) g* is the isotropic eigenstrain in the material due to
. chemical shrinkage and thermal dilatation •* = gth - "gsh. During the chemical reaction two reacting i

monomers reduce their distance in order to attain the equilibrium position. As a result, the molecularchain link experiences chemical shrinkage. The chemical shrinkage in the slab is proportional to the ! i: !

number of formed bonds, i.e. thep above the gel point •

•i: "•s• = Ef P-Pc (6)

1- Pc
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where /is the final shrinkage strain at the end of the cure (.p=lI). The thermal strain is erth = a (T-

Tc) with a being the thermal expansion coefficient for the material, while T = Tc at the percolation-
threshold. In deriving the above equations it was assumed that the bulk modulus of the material is
independent of the connectivity p, i.e. that the polymer response to hydrostatic stresses is
independent of the sol content. Hence, the material is assumed to behave viscoelastically when
subjected to shear stresses, and elastically in hydrostatic state of stress (Lee and Rogers, 1963).

13 5 6

time (hours)

Fig. 1 Variation of autoclave temperature with time

The system consisting of the differential equations (1) and (3) and the non-homogeneous
integral equation (4) are coupled and hence cannot be soved analytically in a closed form. The mean-
field estimate for the temperature T, connectivity p and the stress g can be obtained numerically at
an arbitrary time tand position y by discretizing the time scale into finite time steps (Mallick and
Krajcinovic, 1992). Results of these computations, performed for the curing cycle shown in Fig. 1,

LI are displayed in Figs. 2 and 3. As expected the average stresses are largest at the middle of the slab.
They increase during the entire cure cycle and their spatial gradient remains more or less unchanged
with time. The rate at which the stresses grow is slow at the beginning of the cure cycle. However,
the stress magnitude increases significantly after the sol-gel transition.

SThe mean-field estimates of the temperatures and the stresses present just the first step in the

ii analysis of cure induced defects. Local failure of the material is, obviously, predetermined by the
local, rather than average, stresses. However, determination of local stresses within a severely
disordered microstructure is by no means a trivial task. In fact, computation of local stresses can be
done only by discretizing the slab. In the present case the discretization of the slab into a network of

i nodules connected by bonds has already been discussed in the context of the percolation model of
i the polymerization kinetics. The slab will be approximated by a stack of uncoupled two-dimensional,

fntplane square lattices embedded in (x, z) planes. Since the slab is considered to be infinitely
extended in the x and z directions, variations of displacements in these two directions are zero and
4x C=0. Consequently,

Si~ 0and *L+u 0(7)
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Fig.2 Variation of curing stresses with time
across the thickness of the resin slab
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Fig.3 Evolution of stresses with time at the midplane y =0 and
on the surface y=ho of the slab.

where E* is the average eigenstrain (resulting from chemical and thermal shrinkage). Also, Lx and
Sare the lengths of the network in x and z directions. Finally W, and U., are the displacements
imposed on the boundaries x = L, and z = Lz to satisfy the conditions = =z 0 (assuming x =0

"and z = 0 are fixed). In the current analysis L = Lz= L such that
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ux =z =u=-'*L=-*Ng(8)

In (8) L = NW where N is the lattice size and I is the bond length (internodular distance).

At first glance it seems that the central-force lattice (truss) is the simplest and
computationally least expensive alternative. However, as indicated in Beale and Srolovitz (1988) the
dilution of trusses leads to internal instabilities of the central-force lattice resulting in a response not
typical of real materials. Moreover, the behavior of the lattice in the neighborhood of the percolation

Spoint is dominated by the bending effects (see, for example, the discussion in Sahimi, 1986). It
Sshould also be remembered that the percolation lattice is obtained by renormalization, i.e. that the
sites are occupied by nodules rather than individual monomers. Thus, the bonds between two
adjacent nodules are not single atomic bonds but bundles of bonds which are indeed endowed by
flexural strength and stiffness. Thus, the frame seems to be the simplest trouble-free discretization
available. In this approximation the bonds are approximated by beams which are able to transmit
bending moments, transverse and axial loads.

.1
Rate Model of Rupture

In a disordered microstructure fracture is a statistical event described by probabilistic laws
(Kausch, 1987). Load and temperature to which a specimen is subjected activates a multitude of
processes resulting in the change of its microstructure. It is obvious that it is not possible to predict
with any certainty the onset of a particular molecular event at a particulate time and location.
However, the events such as rupture can be described probabilistically leading to reasonably good
estimates.

thattheThe rate theories of fracture (Regel, et al., 1974, Kausch, 1987, etc.) are based on the premise
that the rupture of a particular bond is controlled by temperature and stress in an equipolent manner.
More specifically, it is assumed that the rupture is not an instantaneous event. The stress serves
merely to lower the energy barrier (activation energy) while the failure occurs as a result of spikes in
"the thermal energy associated with synergisms in the chaotic motion of atoms. The experimental
measurements of the time to rupture tr of tensile specimens made of polycrystalline solids, single
crystals and polymers are fitted well by the exponential expression (Regel, et al., 1974)

Str =oexp UO (9)

using the same notation as in (2). The term yo represents the work of the stress in the bond which
i •reduces the potential barrier Uo. The expression (9) is derived for uniaxial tension of a specimen, i.e.

a homogeneous state of stress. In the case of a link in bending instead of the global criterion it
becomes necessary to consider the rupture of the cross-section subjected to maximum stress. Thus,

16." instead of (9) the time to rupture can be estimated from

S•"i! tr= toexp U, - max( MiOi )
tr~texp(oa (MeJ i=I, 2 (10)

In (10) Mi are the bending moments and Oi are the angular rotations at the two ends of the beam.

Numerical Simulations on the Lattice

The discrete part of the proposed computational model includes the following steps:

liii: (a) The process is started at time r = 0 when the individual nodules are disconnected. Links are added
randomly to the system connecting the nearest neighbor nodules placed into nodes of a regular
square lattice. In this regime (0 < p < Pc) the lattice does not possess any shear stiffness. It is
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assumed that shrinkage stresses are local and very small during this phase leaving the network
structure unperturbed.

(b) At the gel point (p = Pc) the infinite cluster of links traverses the lattice endowing it with shear
stiffness and strength. Starting from this point the formation of new bonds will result in shrinkage

Al strains and stresses within the gel (backbone) cluster.

The state of lattice at t = tI is defined by pl, T, and U1. To determine the temporal change of
state during a short interval of time At it is necessary to compute the increments 4, AT and Ab1,
solving the system of equations (1), (3) and (4). However, the rupture of links depends on local
rather than average stresses. In other words the second term on the right hand side of the equation (3)
provides only a rough estimate of the number of ruptured links. To compute a better estimate it is
necessary to determine local stresses ai in links through the stress analysis of the lattice (frame).

(c) For a selected time interval At, the state variables p2 , T'2 and a 2 are computed for the state of
the lattice at t2 = r, + At . At this time, the incremental displacement imposed on the boundary of the
network due to shrinkage can be computed from (8)

Ali(Yt 2 )= [aAT(y,t 2 ) Ni (11)

where 4 =p2-pJ. AT = T2 -T1. The nodes on x =0 and z 0 are fixed to preserve symmetry. The
nodes on x = L and z =L are attached to rigid walls which are subjected to the displacement AW as
determined in (11).

(d) The angular rotations (Oi, Oj) and the bending moments Mi and Mj at the ends of each link (ij)
are determined using the methods of conventional frame analysis. The equations of equilibrium are
solved by the conjugate gradient method (Golub and Van Loan, 1989). The average forces in the

links are computed from the mean field stresses F multiplied by the tributary area (e2 ). The I...
maximum stress in a link is computed from the greater of the bending moments at its two ends, Mi
and Mj.

(e) The mean time to rupture ti is computed for each bond k from the expression (10). Bonds are
then visited in ascending order of their time to rupture. The probability of failure of the bond k
within the time step At is computed from

... •A t"p,= 1-exp - (12)

The rupture of a link is decided on the basis of a simple lottery. For each link k, a random number Pk
is chosen such that 0 5 Pk < 1. The bond k ruptures if Pk > Pjo. A ruptured link is removed
permanently from the system. The load it was carrying is redistributed to the surviving links relaxing
the system to the state of minimum energy.

(f) After all the bonds in the network have been visited, the bond breaking process is stopped. The
total number of ruptured links in the current time step is computed and compared with the estimate
defined by the second term on the right hand side of equation (3). If the difference is large, the time
step is reduced, the predictor is corrected and steps (c)-(e) repeated.

(g) The simulation is terminated when the probabilities of failure of all bonds in the network become
negligible.
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RESULTS OF NUMERICAL SIMULATIONS

The numerical values for polyethylene were used in the simulation (Termonia et al., 1985,
Regel, 1974 ) in absence of the appropriate data for the thermosetting resins. In particular, E = 300
GPa, Y= 3.65 x 10-30 m and U, = 2.2 x 10-19 J. The constant A0 in (3) was taken as 1.32 x 10-4 sec
to replicate the cure kinetics of the resin Hercules 3506. The thickness of the beams, a, was assumed
to be 5 x 10-9 m and the lattice spacing f was taken as 2 x 10-8 m (Martin and Wilcoxon, 1989). The
constant c in (5) was taken as 3.16 (Mallick and Krajcinovic, 1992).

Figures 4 and 5 show the results of numerical simulations on a 12 x 12 lattice for two
different locations in the slab : (a) the surface (y = ho) and (b) the mid-plane (y = 0). The average
force, the maximum force and the ratio between the maximum force and the average force (i.e. the
stress concentration) are plotted vs. time in Figs. 4(a) and (b). Although the average force is small
just beyond the gel point, the stress concentration is very large. This results from the fact that the just
formed infinite cluster has an irregular structure. The constituent beams resist the shrinkage
deformation by flexure subjecting some of the bonds within the gel to very high bending moments.
With the progress of the reaction more bonds are added to the structure and the network becomes
more ordered. As p tends to I (perfect frame) the beams will resist the shrinkage displacement in
axial mode with no bending at all. The rate of increase of shrinkage strain decreases with time as
well. Consequently, the stress concentration reduces monotonically and the rate of growth of the
maximum force diminishes significantly as the reaction nears its completion. The maximum force is
significantly higher in the middle of the slab than on its surface. This is attributable to the fact that
the center experiences a higher rate of crosslinking, locking in higher residual stresses at a stage
when the network is still very irregular and sparse.

Figs. 5 (a) and (b) show the changes of the fraction of reacted, existing and ruptured bonds in
the network with cure time. The rates of growth of these fractions diminish as the cure progresses.
After the gel surpasses the critical regime, the rate of increase of shrinkage strain and consequently
the energy term MiOi in (10) becomes negligible. In addition, as the temperature of the lattice starts
to descend to room temperature, the time to rupture for the bonds increases significantly.
Consequently, the adaptive time step of the simulation can be increased as well. The simulation is
terminated when the probability of rupture of the most highly stressed bond becomes negligible. The
fraction of ruptured bonds reaches a saturation level near the end of the cure process. It is important
to notice that the damage is much larger in the middle of the slab where it cannot be easily detected.

It is also observed from Figs 5 (a) and (b) that the fraction of broken bonds is considerably
higher in the center of the slab (y=O) than at the surface (y=ho). This can be explained from the
following two facts : (1) the rate of addition of bonds in the center of the slab is higher, resulting in a
higher rate of shrinkage strain; a larger fraction of bonds are subjected to high bending moments and
hence susceptible to failure in the center of the slab, and, (2) the center of the slab attains a higher
temperature due to the exothermic nature of the chemical reaction, reduces the time to rupture for
individual bonds and enhancing the probabilities of their rupture. Higher temperature also results in a
higher thermal shrinkage effect in the center of the slab.

The results of the simulation, although executed on a relatively small size of lattice, brings
out the essential features of damage evolution that is to be expected in the post-gel regime. The
maximum forces occur inside the network where the stress concentrations are high. It can be
postulated that the micro cracks originate from a small avalanche of failures of these hot bonds
located in a close neighborhood. The concentration, distribution and the shape of these defect
clusters are likely to determine the strength and integrity of the cured specimen.
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SUMMARY AND CONCLUSIONS

The basic premise of this study is that the estimates of average (macro or mean-field) values
of stresses and temperatures during the gelation of thermoset resins do not suffice to determine theinitial damage ("birth defects"). The damage attributable to the curing process is directly and
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inherently related to large fluctuations in the stress and temperature fields and the level of the
microstructural disorder.

The principal variables defining the considered processes are temperature, stress and the state
of the connectivity (related to the degree of cure). The source of the stresses are gradients in
temperature and chemical shrinkage associated with the formation of the crosslinks. The attendant
change of volume can be defined by means of eigenstrains. In the mean-field approximation the
volume averaged values of these variables can be determined solving the heat transfer equation, rate
of the chemical reaction equation and the inhomogeneous integral equation relating macro-stresses
and eigenstrains. These three equations are intrinsically coupled since the shear modulus depends on
the connectivity (fraction of existing bonds p) and the rate of the bond formation on the energy
barrier (i.e. temperature and stress).

During the early stages of the gel formation the microstructure of the polymer slab is of very
irregular shape replete with voids and crack-like defects in a variety of sizes and shapes. The
determination of the stress concentrations in such an irregular solid is a non-trivial task. This task is
further complicated by the non-deterministic geometry of the microstructure and distribution of
damage. Within this study the problem of the determination of stress concentration in the diluted
solid is simulated by the bond percolation on a quadratic lattice.

At this point of the development the proposed model has all the earmarks of a feasibility
study. All equations on both scales are written and the problem is conceptually put together into aI coherent, but obviously not final or computationally most efficient, form. As a first try the three-
dimensional problem is reduced to two-dimensions approximating the solid by a stack of two-
dimensional lattices. Some other, less important but not far reaching, simplifications were made for
computational elficiency. Nevertheless, even in its nascent form the proposed model shows all
advantages of statistical modeling and percolation theory in applications to elasticity problems
characterized by the disordered structure.
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ABSTRACT
The objective of this paper is the inquiry into the high temperature rupture of polymers. The

inquiry is of qualitative nature with little pretense in regard to numerical accuracy and fit of
some set of experimental data. Instead the paper addresses some of the fundamental issues of the
high temperature failure of polymer specimens in tension with emphasis on the microstructural
disorder, question of scale and the random nature of the rupture process. Paper discusses a
simple mean-field model (appropriate for oriented thermoplastics), Monte Carlo simulations on
lattices and multifractal formalism needed to deal with crosslinked networks of resins. By
allowing a simple solution the mean-field model serves as an illustration of some of the aspects
of the rate theory of rupture. Two latter models provide an evidence of the effects of the
specimen size on the time to rupture and the stress concentrations on the onset of the tertiary
creep.

INTRODUCTION
This short study focuses on the determination of the time to rupture of polymer specimensI subjected to high temperatures and modest stress level. Inelastic deformation is associated with

the sequential scission of molecular chains. At low stress levels and high temperature the
scission of molecular chains is attributed to spatial and temporal fluctuations of temperature
reflecting the chaotic atomic motion. Consequently, the rupture patterns are random rendering
the conventional, deterministic fracture mechanics failure criteria if not entirely inapplicable
then at least suspect. The second problem is to relate the events on the atomic level (physics of
the long and/or crosslinked molecular chains) to the macro-response and the creep rupture of the
specimen itself, on the micro-scale a resin can be represented as a crosslinked network.
Geometrically, a lattice seems to be an appropriate model of the microstructure. To render this
discretization objective it is necessary to keep the characteristic microstructural length as the
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resolution length of the model. This requires incredibly large lattices which are unsuitable for
the numerical simulations. Multifractal formalism is used in this case to enable analyses of stress
fluctuations in large lattices and provide reasonable estimates of their time to rupture in function
of the applied mean-field stress, average temperature, initial damage and specimen size.

KINETIC CRITERIA OF LINK RUPTURE
Atoms of a molecular chain subjected to temperatures above absolute zero perform chaotic

motion about their equilibrium positions. The intensity of this motion is directly proportional to
the temperature and the disorder level (degree to which the atoms are "frozen" into the micro-
structural network). The stable motion of a single atom, interacting with its neighbors, can be
visualized as a motion of a sphere near the bottom of a potential well. The well depth, i.e. the
distance between the bottom of the well and its rim, represents the energy barrier related to the
attractive component of the interatomic force. At low temperatures the motion of the sphere is
stable, i.e. if the sphere is forced away from its equilibrium position (bottom of the well) it will
return to it within a finite period of time upon the removal of the external force. Occasionally,
the energy imparted to an atom by its vibrating neighbors will be sufficiently large to drive it
over the rim of the well causing in the process rupture of the interatomic bonds. Kinetic energy
of the vibrating atoms is directly proportional to the interatomic forces and temperaure. The
probability of the rupture of the interatomic bonds is proportional to the force (stress) carried by
the bond and the temperature caused by chaotic vibration of its neighbors. A model based on
this concept is, therefore, often referred to as stress/temperature driven (Curran, et al. 1987).

Rupture can also be viewed as a chemical reaction during which the molecular chains are
severed and atoms dissociated from the surface of a solid. The kinetic theory of rupture can,
therefore, be developed within the framework of the rate theory of chemical reactions (collision
theory). The adjective kinetic, characterizing this class of rupture models, indicates that the
conditions leading to the rupture of atomic bonds are deduced from the motion of atoms. Tle
governing rupture parameters explicitly depend on the time. Moreover since the atomic motion
is random the ensuing criteria are stochastic.

In absence of the electrolytic effects the process of chemical dissociation is purely a thezmal
phenomenon. Temperature is a measure of the intensity with which the atoms, forming the
atomic lattice, change their relative positions. Thus, the temperature is by inference an integral
and essential part of the process of fracture. Since the motion of atoms is chaotic the temperature
"exhibits large spatial and temporal fluctuations on the atomic scale. The resultant of interatomic
forces acting upon an atom is in a great majority of cases not sufficient to cause an atom to
dissociate from its neighbors. However, since the number of atoms is very large a non-zero

I.! probability always exists that the chaotic motion will create a "resonance" condition in which
the interactive forces on a small fraction of atoms align themselves to provide a large
unbalanced force collinear with the normal to the surface of the solid. The kinetic energy
"imparted to these atoms may suffice to cause their "activation" or dissociation. These events
correspond to large amplitudes of spatially localized temperature fluctuations. Fracture is,

therefore, in essence a thermally activated process (Glasstone, et al. 1941, Regel', et al. 1974,
Kausch 1987 or Krausz and Krausz 1988, etc.). The kinetics of the scission process is
determined by probability that the peaks of the thermal energy exceed strength of the links of
the molecular network keeping individual atoms of the chain within the potential well.

Skipping the details of the derivation (available in the above cited literature) it suffices to
write down the expression for the average time to rupture of a single link of a molecular chain
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,, = t t exp 
(1)

In (1) U0 (Kcal/mol:) is the sublimation energy (the work necessary to displace an atom from

its equilibrium position to infinity), kbT is the average energy of thermal vibration of atoms
near the bottom of the potential well, where kb = 1.38 10-16 (erg]°K) is the Boltzmann constant
and T (OK) the absolute temperature. Furthermore, (t, - 10-12s) is the period of the free
vibration of an atom. Also. f and u are the force to which a link is subjected and its elongation.
The Arrhenius (exponential) factor can be interpreted as the average number of oscillations
performed by an atom about its equilibrium position prior to its dissociation from the molecular
chain (scission). The difference U. - fu is the height of the energy barrier (depth of the
potential well) which must be exceeded by the imparted thermal energy for a link to rupture.

MEAN-FIELD MODEL OF A BUNDLE OF CHAINS
As a simplest model consider a loose bundle of parallel, highly oriented chains resembling

the crystalline region of a thermoplastic polymer such as polyethylene. Without making further
attempts in the direction of providing a more realistic model of the actual microfibrilar
microstructurc of thermoplastic polymers (see Regel, et al 1974, Kausch 1987, et.) it will be
assumed that all chains are taut and that they equally share in supporting the resultant F of the
externally applied tensile tractions. Only the elongation in the direction of the of the resultant F
is allowed. In other words, the parallel bar model (Krajcinovic and Silva 1982, Krajcinovic, et
al. 1993, etc.) with a democratic load sharing rule is selected as the simplest approximation of
crystalline region of a polymer. The time to rupture of each link is defined by (1).

Within the loose bundle, parallel bar model (mean field) approximation the external force F
is equally shared by all extant (surviving) links. Consider the case when the resultant of the
externally applied tensile tractions F is constant. Denote by N the number of links in the
undamaged system. Even though the externally applied force F on the system is in a classical
creep test held constant the forces in linksf increase with time as the number of ruptured links n
increases. The force carried by each extant link is in this approximation (Regel', et al. 1974)
equal to

F F F
N - n(t) =N,-) = N[l - D(t) I

where N,(t)= N-n(t) is the number of extant bars carrying the external tensile force F =

const.. In (2) the symbol D is used to denote the damage parameter which is here taken as being
the ratio between the number of ruptured links and the initial number links, i.e.

D(t) = nt.. N-N(,() = 1-N N(t) (3)
N N N

The elongation u(t) of the (i.e. its displacement in the direction of the applied force) system is
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F F F a con:u(t) =... . .- (4)K(t) N,(t)k K[1-D(t)]

where K(t) = N, (t)k is the effective stiffness of the system and k=const. the stiffness of a link.
Introduce further the expressions for the forcef, carried by a single link in an undamaged

system and the elongation u. of the undamaged system

F F u N

K 1-D N(

and the time to rupture of a link not subjected to a mechanical force

t* = t,, exp( U" (6)

Using the above introduced parameters the time to rupture of a link (1) can be rewritten as

tr[ N' 1-fu
tr = exp -Q, where Ao fUo (7)tr NkbT

The rate at which the links rupture (dN, / dt) must be directly proportional to the number of
surviving links N1 and inversely proportional to the period tr which separates two subsequent
spikes of thermal energy of magnitude (U. - fu). Thus,

dN--= N--, (8)
dt t,

Final expression for the time rate of change of the damage can now be derived by
combining the two above equations and representing the resulting expression in terms of the
damage variable D. After relatively simple manipulations it follows that

tr = t' exp - (9

The differential equation defining the time rate of the evolution of damage is finally derived

by combining the rate equation (8) and the expression for the time to rupture (9). Hence,

I-D )((10)D

Corresponding initial conditions are that at t=0 the damage D is absent as well.
In addition to the nonlinear ordinary differential equation (10) specifying the rate of damage

evolution it is usually necessary to determine the displacement (elongation) u of the system (for

170

, iI I I I 'II I



a constant force F)

du F dD (11)
dv K(1- D)2 dv
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Fig. 1. Damage evolution and system elongation as a function of time.
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For purpose of illustration take U. =2.10-19 N m and define the contribution of the
mechanical load to the decrease of the energy barrier as a fraction of its initial height by
fouo = aUo (where 0:_< a < 1). The increase of the damage and system elongation (chain
stretch) with time for a=0.1 are plotted in Fig.1 against the time. The plots in Fig.1 clearly
demonstrate the familiar trademarks of the traditional secondary and tertiary creep deformations.
If the stress is increased by 2.5 times (oa=0.25) the time to rupture decreases by 6 .104 times.

LATTICE SIMULATIONS
The so-called effective continuum and/or mean-field models are based on the assumption

that the defect density is reasonably small and that the direct interaction of adjacent defects
represents a second order effect. More specifically, it is assumed that the local stress field in the
vicinity of each defect is equal to the average, far-field stress field. As a result all spatial
correlations, leading to stress concentrations, are eliminated from considerations. The accuracy
and the applicability of this popular class of methods in estimates of the rupture thresholds and
rupture modes is at best questionable. Unfortunately, a rigorous, analytical determination of the
local fluctuations of stresses attributable to the direct interaction of randomly spaced defects of
complex and irregular geometry remains an elusive goal.

Lattice simulations of the rupture processes in disordered continua, developed in the last
decade by statistical physicists, proved to be quite successful in modeling of the type of failure
of current interest. Microstructure of epoxy resins emphasizes a network consisting of a set of
aggregates (nodes) interconnected by links in form of crosslinked molecular chains (Martin and
Wilcoxon 1989). The diameter of these aggregates ranges from 0.01 to 0.1 pm. Exact geometry
of the lattice depends primarily on the functionality of the monomers.

Assume that a particular epoxy microstructure can be, in a two-dimensional approximation,
modeled by a triangular lattice. Assume also that the activation energy of each link are identical.
The simulation is in this case quite simple (Termonia, et al. 1985, Mallick and Krajcinovic
1992). The probability of rupture of the i-th link within a time interval At is

p r) (t C A0)= t-1 exp U"-f~iAt (12)

since the rate of rupture of links is inversely proportional to their time to rupture (1). In (12) fi
and A~i are the force carried by the i-th link and its elongation (stretch). Original (unstrained)

length of "all links is . The sign of the product fiAti is taken as positive if the force is tensile
and negative if it is compressive. This is consistent with the fact that the height of the rupture
energy barrier is decreased by tensile and increased by compressive forces.

The initial step in the lattice simulation consists of the determination of the forces in the
links of the lattice at t=0. Lattice is subjected to uniaxial tension in vertical direction. To
facilitate the sinulations the lattice is provided by two rigid bus-bars needed to distribute the
load evenly to the lattice. Periodic conditions are prescribed on lateral sides to avoid shape
effect. Forces in links are computed from conventional truss analyses. Once the forces acting on
each link and link elongation are computed the probabilities of their rupture is determined from
(12). The time period At (upper bound) during which at least one link must rupture is obtained
from (12) as the inverse of the cumulative probability
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Fig.2. Strain vs. time for two lattices of different sizes for different initial damage.
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A link can rupture well before the maximum At, computed from (13) by using the equality sign.
expires. Keeping time interval At well below the upper limit will significantly increase the
simulation accuracy. A link which ruptures is now determined by a Monte Carlo lottery.
Ruptured link is removed from the lattice, the lattice is relaxed and new equilibrium state
computed. The next step in simulations is performed using the newly computed forces in the
links of a lattice which is not any more perfect. Links adjacent to the removed links carry larger
loads. Hence, the stress concentrations attributed to defects is accounted for using truss analyses.
Failure occurs at the state at which the diluted lattice ceases to be able to transmit the applied
(constant) mechanical tractions. Time to rupture is computed adding all time steps (13).

1.0'

0.8

0.6

0.4
_ ~~._p=l.O

0.2 -.

0 2000 4000 6000 8000

time to rupture (hrs)

Fig.3. Cumulative probability distribution function of time to rupture vs. time to rupture.

Numerical simulations were performed using the following input data (taken mostly from

the cited literature) I=5.10-4 m, U, =2.19.10-" Nm, E=2.76GPa, o=2.76MPa and
T = 0.8T., where E is the elastic modulus, o=-const. the externally applied tensile stress and

Ts = 403"K the glass transition temperature. The size of the lattice in the direction of the

applied loads is denoted by L. These input data are roughly characteristic of the commercially
available resin diglycidyl ether of bisphenol A (DGEBA). To minimize the computational effort
the time interval At is determined using the equality sign in (13). The curves shown below are
computed averaging over 500 samples of the smallest lattice size A = L / t = 8, 100 samples for
A-=16 and 50 samples for A=24. The number of samples on largest lattice size A32 were too few

' to provide reasonably smooth averages. The plots of strain vs. time is shown for three different

initial dilutions (l-p) in Fig.2a-b. The onset of the tertiary creep is marked by the sharp change
of the gradient in the curves in Fig.2. Cumulative probability distribution P(t) for the time to
rupture for the case 1=24 is plotted in Fig.3. Curves for other sizes are quite similar. In both
Fig.2 and Fig.3 symbol p. is used to denote the fraction of links present at the initiation of the
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simulation. Thus, p. = 1 characterizes a perfect (undamaged) lattice. As expected the influence
of the initial defects manifests itself only in the translation of the plotted curves.

It is interesting that the effective stiffness of the lattice is a linear function of the dilution
q = 1 - p, where q can also be interpreted as the probability that a link is ruptured. Linear
dependence of the effective stiffness on the dilution (fraction of ruptured links) q is independent

* of the lattice size X. and persists well beyond the defect concentrations for which this could have
been expected. This conclusion is consistent to one deduced three years ago by Krajcinovic and
Basista (1991). Independence of effective stiffness on specimen size is of significance for the

* selection of the damage parameter on the macro (or specimen) scale, i.e. interpretation of the
test data and their relation with field measurements on actual structures.

MULTIFRACTAL FORMALISM
Numerical simulations illustrated in the preceding section have a somewhat insidious and

* ~. serious shortcoming. The expressions derived in two preceding sections are based on the
considerations on the molecular level. As a result the resolution length must be equal to the
distance between two aggregates, i.e. to I = 5.10-4 m. Hence, to consider a two dimensional

i :,. specimen it is necessary to have 4. 10") nodes per each cm of the specimen. This obviously
represents an impossible task even if the fastest available computers are available. A possible
alternative, which is very often pursued, is to use a coarser discretization. The links in this lattice
do not have a clear physical significance and the determination of the material parameters is
relegated to fitting some data with adjustable "constants". Moreover, no hierarchical
discretization (including finite element method) is objective since the direct interaction is
allowed only between the defects belonging to the same "finite element". As a rule results

obtained by any discretization of this type are mesh sensitive.
A much more reliable set of results can be derived using the multifractal formalism

discussed in Krajcinovic and Mallick (to appear) based on the methods developed by Hansen
and Roux (1988), Roux and Hansen (1989) and many others. A rather lengthy and involved

derivation is based on the fact that the rate at which the links are ruptured are equal to the sum
of the individual probabilities

1q = , I (, )

WE exp( o3 IJ=2 exp( kb :JM.(0 (14)

,d=- to kb . k.-. n

where MJ(D) is the n-th statistical moment of the distribution of free energies p(oi = f8 6i).
Using the property of self-similarity at the percolation threshold the n-th statistical moment can

* . be written (for a constant stress ensemble in the considered case) as

M. (0) = J"p(O)d4 11(") (15)

In contrast to fractals the exponents z(n) are different for different n.
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Fig.5. Time to creep rupture as a function of specimen size
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Leaving the details of the derivation for a subsequent paper it seems interesting to highlight
at least some of the preliminary results. The plot of the strain vs. time using multifractal
formalism and numerical simulations for a large lattice ;L=32 is shown in Fig.4. At this point it is
not evident whether the discrepancy between the results should be attributed to a rather coarse
simulations (using equality in the determination of the time interval in (13)) or to some other
cause. It is interesting, that despite persistent discrepancies in the latter part of the secondary
creep phase, the time to rupture determined by the two compared methods were uniformly close.
The time to rupture vs. the specimen size, computed on the basis of the multifractal formalism,
is plotted in Fig.5. As expected the initial drop in time to rupture with increase of specimen size
is rather dramatic. As the size becomes larger the size effect becomes less pronounced.

SUMMARY AND CONCLUSIONS
The presented study of the creep rupture of polymers emphasizes three important aspects:

(a) influence of the temperature on rupture of molecular chains, (b) role of the microstructural
disorder, (c) random character of the rupture process and (d) the effect of the specimen size. The
study is qualitative in nature and ensuing conclusions must be interpreted as a rough guidance
into the physics of the phenomenon. Each of those four issues has a strong influence on the
creep deformation in general and the rupture threshold in particular. The conventional models
based on mean-field analyses of homogenized continua, deterministic rupture (or damage
evolution) criteria and arbitrary discretizations do not address either of these issues. Introduction
of many adjustable parameters or non-physical idealizations of the constitutive laws (including
at least some of the micro-polar models) may, indeed, provide means to fit a set of test data but
will not go very far in providing a better understanding of the deformation process. It seems
reasonably to conclude that the large scatter of experimental data is not a nuisance or a result of
poorly conducted tests but a reflection of the four essential aspects of the problem listed above.
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DAMAGE INCURRED DURING THE POLYMERIZATION OF
THERMOSETS

D. KRAJCINOVIC
Arizona State University, Tempe, AZ, USA

Abstract
The proposed analytical model for the determination of the damage incurred during
the polymerization (curing) of thermoset resins is based on the consideration of the
interaction of heat transfer, chemical reaction and mechanical deformation.
Consideration is focused on the molecular, micro and continuum (macro) scale.
Proposed model illustrates the fundamental importance of the microstructural disorder
on the curing process. A short discussion of characteristic lengths, characterizing the
microstructure, provides often neglected criteria for the selection of appropriate
models. The analytical model are illustrated with a simple problem of damage
evolution in an infinitely extended slab of resin.
Keywords: Damage mechanics, polymers, gelation, order-disorder transition,
percolation, size and scale effects.

1. Introduction

Principal objective of this paper is to illustrate the fundamental aspects of relation-
ships which exists between the events observed on: (a) molecular, (b) micro and (c)
macro (continuum) scales. The basic premise of this study is that an appropriate
description of the microstructural disorder is an absolute necessity in analytical
modeling of this class of problems. Selection of analytical model must be based on
the relative magnitude of the characteristic lengths which describe the state of the
order of the microstructure.

The effect of the disorder on the macro response (transport properties) of the
system is of largest importance when the concentration of micro-defects is large. A
curing polymer is characteristic of this class of processes since it, by definition,
passes through the connectivity or sol-to-gel transition. At low values of the degree
of cure (i.e. while the sol phase percolates) the system is a fluid with a progressively
increasing viscosity. The deformation of the solid fragments (clusters) is entropic in
nature since it occurs in absence of strain energy accumulation. At the sol to gel



(phase or elastic percolation) transition the solid phase (gel) percolates through the
system. The curing slab acquires shear stiffness and the further deformation occurs in
enthalpic mode involving stresses, strains and storage of elastic energy in the
crosslinked gel cluster. Stresses in the system are attributable to the chemical and
thermal shrinkage of the slab and spatial and temporal fluctuations of the temperature.

2. Polymerization Process

At the onset of curing (i.e. at zero degree of cure) a system consist of individual
monomers (single molecules) and initiators. Low temperatures restrict the mobility of
monomers and prevent chemical reactions. The mobility of monomers in the bath is
increased as the temperature in the autoclave is raised. The ensuing physico-chemical
process is known as the polymerization. Curing of thermosets is a complex process
during which a fraction of colliding poly-functional m-mers which are endowed with
a sufficient kinetic energy, react and bond together into large molecular chains.
During advanced stages of the curing process individual molecular chains crosslink
into large three-dimensional networks of irregular geometry and topology which
provide stiffness (resistance to deformation).

Emergence of stresses in a crosslinked network during curing is attributed to
eigenstrains caused by thermal and chemical shrinkage and temperature gradients.
Thermal shrinkage occurs during the cooling cycle. Chemical shrinkage reflects the
reduction of distance between reacting n-mers during the formation of a bond. Since
the collisions between n-mers and k-mers are random events the distribution of
eigenstrains is random both in spatial and temporal sense. Local fluctuations of
thermal, stress and strain fields are further magnified by the disordered (gossamer)
geometry of the ramified network of polymer chains. Consequently, even though the
average stresses just beyond the sol to gel transition may be relatively modest the
stress concentrations suffice to cause nucleation of sub-microcracks and microcracks.
The presence of the ubiquitous process induced damage in polymers [1-3] is a
testimony to the effect that the disorder has on the damage evolution.

Newer models of polymerization, supported by the electron microscope studies
[4], lend support to the premise that the physics and chemistry of gelation is governed
by a sequence of a kinetic (aggregation) and an equilibrium (percolation) process. In
its initial stage polymerization is dominated by the mobility of monomers forming a
multitude of aggregates suspended in the sol phase percolating through the specimen.
System deforms as a viscous fluid. Topologically, the structure of each aggregate
resembles a Cayley tree as suggested by the Flory-Stockmayer theory. The diameter
of the aggregates typically reaches 0.01 to 0.1 pin [5] before they run out of "free
volume" exhausting their "molecular maneuverability and macroscopic fluidity" [6].
At this point aggregates are too large and too densely packed to be able to change
their position without deforming and displacing the neighboring aggregates. At this
point the process crosses over from aggregation to that of bond percolation
characterized by a random formation of bonds between the stationary aggregates
(which assume the role of renormalized monomers fixed in the sites of a three-
dimensional lattice).

During the percolation stage of the polymerization process "stationary" aggregates



link together by bonds. These aggregate clusters form networks which grow larger
with time. At a given connectivity between individual aggregates the divergence of
the so-called correlation or coherence length ý (defined as the length beyond which
the cluster sizes are exponentially rare) indicates the emergence of the infinite
(spanning) cluster (gel molecule) of interconnected aggregates having a finite shear
stiffness. Physically, the aggregates flocculate and as ý -- - the flocculated phase
forms the infinite network or gel. On the macro- (or slab) scale, the percolation
threshold ý -• ,,, or sol to gel transition, is discerned by a very steep increase of the
viscosity of the system. The attendant immobilization of the curing mass is reflected
in the attainment of the shear strength and stiffness. The actual elastic percolation
threshold is therefore defined as the connectivity p = Pce at which the infinite
(spanning) cluster emerges on the renormalized lattice (with aggregates as nodes).
Topology of the lattice is defined by the functionality of monomers. The distance
between the sites is set by the diameter of the aggregates at the crossover from the
aggregation to the percolation phase.

Final changes in material properties take place when the temperature is decreased
to the glass transition level. Above the glass transition temperature polymers behave
as a viscoelastic solid. At temperature below the glass transition temperature the
conformation (entropic) changes of the molecular chain geometry become difficult
and each chain locks in a given conformation.

3. Characteristic Lengths

Typical analytical models of micromechanics are based on the universally used
but not always acknowledged assumption that the considered material is statistically
homogeneous on some scale which is much smaller than the smallest linear size of
the specimen. This assumption is seldom questioned under the guise that the defect
concentration is small. In the considered case, characterized by a large micro-
structural disorder in the vicinity of the sol to gel (connectivity) transition this
assumption is obviously not applicable.

The above offered description of the process and the distinction between the
micro and macro scales are purely qualitative. A precise quantitative distinction
between the scales involves several characteristic lengths. The first length t defines
distance between the aggregates at the point at which they become immobilized (i.e.
at the crossover between the aggregation and percolation regimes). At first glance it
appears that the length £ is not important from the point of view of stress analysis
since the stresses are negligible before the gel molecule forms (prior to the point at
which the solid acquires shear strength). However, the length £ is important since it
defines the intrinsic length of the sub-microcracks nucleated by the rupture of a single
link connecting two adjacent aggregates. Hence, the length £ is the intrinsic
microstructural length and must be selected as the resolution length (mesh size) to
render micromechanical analyses objective (mesh independent).

The linear specimen size L is the second characteristic length which must be
introduced since the fracture strength is an extrinsic property of brittle solids
(reflected by the conventional size effect). In certain cases the strength or toughness
of disordered solids may also exhibit shape effect. In these cases a single length is



not sufficient to characterize the strength of the specimen.
Finally, the correlation length ý, defined as a maximum length over which the

clusters of interconnected aggregates are exponentially rare, is not only important in
its own right but is crucial in the process of the selection of the analytical model.
Somewhat less precisely the correlation length can also be defined as the mean
distance between the two sites belonging to the same cluster. The correlation length
is typically defined in function of the connectivity p of the network. The connectivity
p is defined as the fraction of links formed between the aggregates during the
percolation phase of the process. At the percolation threshold (sol to gel transition
P = Pce) of an infinite lattice the correlation length ý tends to infinity, i.e. spans the
system by connecting two sides of the specimen. Hence, at the percolation threshold
the only evolving characteristic length is lost and the microstructural geometry is
rendered self-similar. Infinite cluster is a random, physical fractal which is statisti-
cally self-similar. In other words the probability density function of the considered
medium property does not exhibit spatial fluctuations. In the asymptotic
neighborhood of the percolation threshold (with p slightly in excess of Pce) the range
of the self similarity is finite. At lengths less then ý the geometry appears to be
statistically the same as at the percolation threshold. On the scales larger than ý the
network appears to be statistically homogeneous. Thus, the correlation length
represents the upper bound below which the cluster is self-similar. The property of
self-similarity, reflected in the universality of the scaling laws and percolation
threshold Pce, will be repeatedly used in the sequel to this part of the paper.

In micromechanical models it is necessary to relate the actual random,
inhomogeneous and piece-wise discontinuous solid with an equivalent effective
continuum. The mapping between two media is based on the establishment of the
equivalence of the properties and fields in a point of the effective continuum and the
corresponding properties of the actual solid averaged over a volume of the material
enveloping the considered material point. The smallest volume of the material for
which this correspondence can be established, at a given goodness-of-fit, is defined as
the representative volume element. The material properties are, therefore, the
properties of the representative volume element with a linear size L.

Having defined characteristic length and their influence on the homogeneity of the
system it becomes possible to determine the range of the validity of methods of
analysis. The utility of the effective continuum methods is limited to the case when
the defects in the lattice are small, i.e. when the largest defects can be comfortably
tucked into the representative volume element. The MMM (micro, meso, macro)
principle of Hashin [7] can be cast into a more explicit form of an inequality

S<<Lr << L (1)

where ý and Lr are the linear sizes of the largest defect cluster and the representative
volume element. Concentration of defects must be small enough to: (a) render the
direct defect interactions a second order effect and (b) reduce the probability of
finding a large cluster of connected microcracks to negligible levels. At the incipient
percolation transition the condition (1) is not satisfied since the defects percolate
through the specimen, i.e. since the size of the defect cluster is singular • - ,,,.



Second of two conditions, related to interaction of the adjacent defects, is also not
satisfied in the neighborhood of the percolation threshold rendering the conventional
continuum theories and micromechanical models based on the effective continuum
(mean-field) theory at best imprecise and vague and at worst inapplicable.

In summary, in the neighborhood of the percolation threshold
p--.p+ and .- 'O (2)

the geometry and topology of the microstructure is statistically self-similar. Within
this range percolation models provide good estimates of the macro response. At
modest connectivities p for which a small enough representative volume element
exists, such that inequalities (1) are satisfied, solid is statistically homogeneous over a
small enough volume needed to render the mean field theories applicable. The macro
response within the crossover regime separating the self-similar and macro-
homogeneous regime depends not only on the defect density but also on the direct
interaction between closely spaced micro-defects. In most cases the determination of
the macro response within the crossover regime does not admit elegant analytical
solutions. This type of problem is typically approached using numerical simulations
and introducing switching (or blending) functions which in two limits blend into self-
consistent and percolation solutions [8].

4. Continuum Model

Most of the existing literature [3, 9--11] etc. related to the curing problem focuses on
the formulation of local continuum models. Based on the dubious premise that all of
the processes depend primarily on the average stresses and strains these models are
applicable only when the microstructure is rather homogenous and the stress
concentrations negligible. As demonstrated above this is by no means true in the case
of polymerization. The geometry of the gel molecule is all but regular, presence of the
correlation length renders the solid intrinsically non-local and the rupturing sequence
of links is a random process. However, for computational efficiency it is necessary to
formulate the continuum model as a general framework relating average stresses,
strains and temperature on the specimen scale. This, in fact, is the objective of this
part of the paper.

The process of heat conduction is governed by the partial differential equation of
diffusion type [12-14] etc.

K~ (C ) + pHrdX (3)

In general, density p, thermal conductivity K1 and the specific heat Cp depend on the
extent of the reaction (i.e. the connectivity). Total exothermic heat energy H1 genera-
ted during the course of the reaction is assumed to be a constant for a specified resin



and curing regime. The second term on the right hand side of (3) represents the heat
liberated during the exothermic reaction of bond formation. The parameter Z(y,t)
represents the fraction of molecular bonds (probability that a given bond between two
molecules exists) and is, for a simple polyesterification reaction, related to the degree
of cure a(y,t), defined as the probability of finding an individual monomer, by the
expression derived in [15] for a simple poly-esterification reaction as

X = a 2  (4)

Relation (4) is crucial for experimental verification of the model since the degree
of cure a can be measured using scanning calorimetry methods. Another parameter
used in percolation models to quantify the connectivity is p is defined as the probabi-
lity of finding a link connecting two aggregates. However, ftis parameter cannot be
measured. The parameters p(y,t) and Z(y, t) are linearly proportional suggesting the
following relationship satisfying asymptotic behavior at percolation threshold

p Z XsH(l-Xs) (5)
1-Zs

In (5) H(x) stands for the Heaviside functional while Z, is defined as a fraction of
monomer bonds at which the aggregates become mobile and the process crosses over
from aggregation to bond percolation. The expression (5) preserves the asymptotic
behavior (scaling law) of p and X in the neighborhood of the percolation threshold.
The need for the relation (5) is further emphasized by the fact that during the
aggregation phase of the process p = 0. Distinction existing between the three
parameters (Z, a, p), defining the connectivity of the gel network, has neither been
fully recognized nor appreciated in the existing mechanics literature.

The equation of the rate of chemical reactions can be derived from the collision
theory. Rate at which the bonds are formed depends on the probability that two
molecules, having sufficient kinetic energy to overcome the repelling forces, will
collide and react in a unit of time. This probability is, according to the Boltzmann-
Maxwell statistic [16] given in form of the Arrhenius dependence on the temperature
T and activation energy U. Thus, the probability that a bond will be formed during
the collision is proportional to exp(-U / kT) where kb is the Boltzmann constant.
Activation energy U is defined as the difference between the sublimation energy U0

and the free energy (5 stored in a link of the network.
The rate of the accrual of links in the renormalized network was derived in [14,

17] in the form of an ordinary differential equation

pdp _ 1 )pU (lp)_ 1 exp(i Uo- 0' p P>pc, (6)
dt o kbT) N _ to kbT

First and second terms on the right hand side of the expression (6) defines the rate at
which the links between the aggregates are formed and ruptured, respectively.
Equation (6) can be rewritten in a simpler form as



dt to  kbT)

The parameter w can be cast into a more convenient form [17] as

W 2  -M (op) (8)
n=o

where

Mn ( fp = Pný(qp)dip (9)

0

is the n-th statistical moment of the distribution of the normalized free energy
(P = D / kbT stored in the individual links of the gel network.

Finally, it is necessary to derive the equation relating the macro (average) stress in
the slab and the eigenstrain related to the thermal and chemical shrinkage. The well
known expressions for the relaxation of polymers due to the changes in the
conformations of the molecular chains associated with the disentaglements and
diffusion of segments [18] must be changed to accommodate the changing
connectivity p(t,y) of the network. The character of the viscoelasticity is determined
by the vibratory motion of individual chain segments and the free length of chains
between two adjacent crosslinks. The characteristic time of relaxation depends on the
state of connectivity and the frictional effects which inhibit changes of conformations.

Continuum theory of the viscoelastic response of crosslinked polymers based on
the Rouse and Zimm models and the reptation dynamics was recently developed in
[4, 19]. Elastic properties of a curing polymer change with the extent of crosslinking
(growing degree of cure a). Realizing that the change in the degree of cure a results
in the change of scale (defined by the change in the correlation length ý) [19]
suggested a redefined time to account for the proportionality between the relaxation
time of a cluster and its size. The ensuing time-cure superposition model
approximates the viscoelastic deformation of curing polymers by a sequence of states
corresponding to discrete times defining the extent of the chemical reaction.

Considering a slab infinitely extended in horizontal direction (xz plane), free of
tractions at the bottom and top surfaces and neglecting the body forces, the integral
equation for the only non-vanishing components c,(y,t) =z(y,t) of the macro
(volume averaged) stress tensor can be derived in the following form [17]



J___________ _____dG o[p(s)]s
1 a(y,)+G[P(S)) ds + f S (s)
2 f 3K[p(s)] ds ds ds

0 0

+fGrt-s'p(s)]" 2 daX(Y' S) + 3 dE 's)y, s) 0 (10)
fr~P' 3K[P(S)) ds dsf
0

where Gr(p,t), G_(p) are the equilibrium and relaxation shear moduli, K(p) the
bulk modulus and

-* -h(T T) P - Pce (11)

1 -Pce

the volume average of the eigenstrain due to the total shrinkage attributable to the
chemical reaction and temperature. In (11) a, Tce and gf are the coefficient of
thermal expansion, temperature at the percolation threshold and the final extent of
shrinkage at the termination of the cure process (p = 1). Finally,

$

ef dey (u) dei'(s) f js- u,p(u)] d u (12)
0

is the effective strain tensor which couples the memory effects of the relaxation and
the equilibrium moduli of the curing polymer [19]. The non-dimensional (normalized)
relaxation modulus in (12) is defined by the ratio

r(S) - G (s) (13)Gr(O)

Details of the derivation are available in [17].
In summary, a rational determination of macro (volume averaged) stresses and

strains in a curing resin slab requires solution of three coupled equations (3), (7) and
(10) governing exothermic heat conduction, rate of chemical reactions and
mechanical deformation. Boundary conditions require that the temperature at the
traction free surfaces y = +h (where 2h is the slab thickness) is equal to the autoclave
temperature. Initially, at r = 0 the stresses are equal to zero and the connectivity is
equal to the connectivity at the elastic percolation threshold p(t = 0) = Pce.

Three governing equations in three unknown functions a, (y,t), T(y,t), p(y,t) are
coupled both directly and indirectly through the parameters which depend on the
connectivity p. The determination of the effective parameters using micromechanical
models such as mean field and percolation theories is a well understood problem. A
much more insidious coupling occurs in equation (7). The rate at which the links of
the renormalized network rupture depends not only on the zero-th (i.e. average stress)
but on all other moments of the distribution of forces (internal energies) in the



network as well. Consequently, the considered problem cannot be solved using the
conventional mean field models of micromechanics.

5. Micromechanical Considerations

The material parameters in the heat conduction equations do not exhibit singular
behavior in the neighborhood of the percolation threshold. In fact they change only
slightly and to simplify the derivation they will be considered as being constants.
Furthermore, it will be assumed that the bulk modulus changes with the connectivity
in a manner defined by the self consistent approximation, i.e. that in tension

K(p) _ P Pce PC,•P
PKe <_p<_Ko .1 -Pce

and (14)

K=0 P < Pce

Expressions (4) ignore finer points of the scaling laws in the asymptotic neighbor-
hood of the percolation threshold and the interaction of defects in the crossover
regime. A more sophisticated form for K(p) can be derived using blending functions
[8] but the gain will be minimal since the accent is on the shear stains.

At the percolation threshold (gel point) the shear modulus (i.e. stiffness) of the
slab is, by definition, equal to zero. As a consequence of similarity the shear stiffness
is expected to follow a universal power law immediately after the slab passes through
the gel point. This expectation was, indeed, observed in experiments (summarized in
[4]) in which a polymer at gel point was subjected to an oscillating strain field of
constant amplitude. The divergence of the viscosity and the equilibrium shear
modulus in the asymptotic vicinity of the gel point is defined by the scaling laws [19]

7 -pCe -p and Go-IpC -plz (15)

Universal exponents in (15) are z = dv = 8/3 and 0 < k _< 4/3, where v is the
exponent for the correlation length c. As the connectivity p is increased beyond the
percolation threshold the clusters size increases. Large clusters diffuse slower than
the small ones. Thus, the degree of the cure is reflected in the change of the scale.
The actual time must be renormalized dividing it by the longest relaxation time 'r,
which dominates the dynamics of the of molecular chains. The longest relaxation

time is defined as a time needed for a chain of length ý to diffuse through its own
radius. Written in the following form

f= tGT(t)dt fGT(t)dt= 1pPC,1(z+k) (16)
0 /0



the longest relaxation time also represents the time at which the response crosses over
from a simple to a complex viscoelastic regime. Accounting for the fact that the
decay crosses over form the power law to an exponential law as the time t approaches
the longest relaxation time the expression for the relaxation shear modulus for the
bulk polymer melt was specified by [19] as

a(3) W, ..- ¢ -1 z _ epI¢rz 1.4 P < Pce

r { L t[

and (17)
G , t) = G _( ,r )• 2 / 3 e x [ ( t ) 0 .4expP > Pce

where C is a constant which depends on the shear modulus of the glassy phase.
The first of the two expressions (17) is applicable to the system in which the fluid

phase (sol) percolates, i.e. for a viscous fluid with a vanishing equilibrium shear
modulus. The second of two expressions, representing the statement of the cure-
superposition principle, is valid for a system in which the solid phase (gel) percolates.
The shear resistance is provided by the infinite cluster (gel) which dominates the
deformation process. The simple scaling law (17) was shown to replicate the
experimental data with a surprising accuracy [4, 19] which persists well into the mean
field regime.

Finally, it is necessary to determine the stiffness of the links connecting
aggregates (sites of the renormalized lattice). Each of these links represents a
network formed by several molecular chains crosslinked to each other. On the
molecular (chain) scale the deformation modes of a single chain include: change of
conformation (segment rotation or gauche-trans transformation), cavitation, slip
and/or chain scission [2]. To determine the "stiffness" of a chain it suffices to
consider only the change of conformation and its effect on the flexibility. A
stretching polymer chain passes through a sequence of a discrete equilibrium
(minimum free energy) states which correspond to different conformations. In the
course of stretching process very little energy is stored in the bonds. The change in
the free energy is almost entirely attributed to the decrease in entropy (probability of
corresponding conformational states). The deformation process of the described type
belongs to the class of entropic elasticity. If the force on a single free and highly
deformable links is maintained for a long time the chain reverts to its most probable
conformation converting the excess energy into heat.

The stiffness of a single chain can be determined analytically only for small
deformations of freely jointed single chains. In all other cases determination of the
link stiffness requires simplifying assumptions. Force-displacement relation in a
crosslinked chain network combines the competing effects of elastic stretching
(enthalpic effects) and conformation changes (entropic effects). A crosslinked
network is both dissipative and energy storing. Assuming the deformation to be small
it can again be assumed that the force-elongation relation remains linear but the
spring stiffness is not a constant.

Consider a crosslinked network consisting of N, chains each of which is formed of



n, segments. The average free energy stored in a segment of i-th link is
Oi (p) = Di /[Ncns(p)]. Free energy stored in the link can be estimated assuming
that: all chains have the same length and that the end-to-end distances of each chain
are defined by Maxwell probability density function [20]. Subject to these
assumptions the average free energy stored in a segment of the i-th crosslinked
network connecting two neighboring aggregates is

S3kbT r2  (18)O•i (P) = Ncns (P) 2n, (p)t2 r(8

where £ is the average distance between the aggregates and ns(p) the average
number of segments in a chain. As the number of segments in a crosslinked network
increases during curing the free energy decreases while the activation energy
increases. The rate of rupture of links connecting the aggregates rupture (8) is now

w= i nPq(9p)dqp where T (19)
n=O 0 kbT

Normalized free energy Tp in (19) is redefined in view of the postulated rupture
process of radicalized chains. The mechanical energy stored in the link serves only to
lower the energy barrier through its contribution to the free energy (in form of the
internal energy). The increase of the temperature does not only decrease the argument
of the exponential function in (6). It also increases the free energy through the
entropy term and the rate of formation of free radicals (reducing the time needed for
the rupture of a link caused by the scission of a single chain). Hence, the rupture of
links connecting the adjacent aggregates is a random process due to the non-
deterministic nature of the spatial and temporal fluctuations of thermal energy.

Formation of a crosslinked connection (link) between two adjoining aggregates is
not instantaneous. Thus, the link "stiffness" varies with time during its formation.
Link rupture is a much more rapid process of chemical dissociation which is also not
instantaneous. Since the time needed to form and rupture a link is still short
compared to the cure duration it will be assumed that the spring stiffness remains
constant from its formation to its rupture and that the link rupture is instantaneous.
These assumptions are entirely consistent with the selected resolution length
according to which events on molecular scale are smoothed out.

6. Distribution of the Free Energy in the Lattice

Distribution of forces (and energy stored) in the links of the renormalized lattice can
be determined using numerical simulations. However, for a lattice analysis to be
objective the resolution (bond) length i must be equal to the inherent characteristic
length of the microstructure (size of the nucleated sub-microcracks). In the present
case, the characteristic microstructural length is equal to the average distance between
the adjacent aggregates at the crossover from aggregation to percolation. The initial
length of the sub-microcracks [1,2], nucleated in the course of the rupture of a single
link, is on the order of t 0.l1 rn. Thus, to preserve the objectivity, a cubic lattice
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occupying a cube with a volume of only 1 cm3 should be modeled by a lattice having
1015 nodes rendering objective simulations impractical if not impossible.

Analytical methods based on the self-similarity of the gel cluster geometry near
the percolation transition provide the only feasible alternative. The mass (total length
of all constituent links) of the spanning cluster is a statistical fractal. However,
different subsets of the cluster (formed by links storing equal free energy) have
different fractal dimensions. Structures of this type are referred to as multifractal and
are often formed by random multiplicative processes.

Assuming that the considered slab can be approximated by a deck of lattices the
distribution of energy stored in the links can be determined using the multifractal
formalism developed in [21, 22] Skipping the details available in [17] the expressions
for the statistical moments (9) scale in the vicinity of the gel point as

M" (0p) ( )ccV(') where =L / (20)

Each statistical moment scales with a different exponent y(n) which do not
depend on the specimen size. However, expression (20) incorporates the scale effect
through the parameter X. The expressions for the exponents can be derived for the
percolation transition and the period for which p > Pe After a rather long derivation
the exponents in (20) can be written as

A ( I-P )M[_1.25+l.03n+0.87exp(-1.35n)] (21)

where m is a positive integer. Finally, the expression for the rate at which the links
rupture (8) becomes

W= - )ChW-"Xy- where f JPýd-(2
n= n!'~ kbT)0

where the constant C1 must be determined from simulations.

7. Illustrative Example

Using data for the DGEBA epoxy resin and the curing regime shown in Fig. la it was
now possible to solve the problem by numerical integration of the derived system of
equations (3), (7) and (10), with effective material parameters defined in Section 5
and the rate of link ruptures by (22). Figs.la,b show that the damage accumulates
(link rupture) before the cooling starts. Thus, as conjectured in [3], the damage
incurred during the polymerization is attributable to the chemical rather than thermal
shrinkage. Furthermore, comparing curves with triangles it becomes obvious that the
damage is much larger in the middle of the slab than on the free surfaces.
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Fig.1. Evolution of the normalized temperature, degree of cure (a), connectivity p
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8. Summary and Conclusions

The proposed model for the determination of the damage incurred in thermoset resins
during polymerization: (a) encompasses three scales, (b) couples equations of
chemical reaction rate, heat transfer and mechanical deformation and (c) clearly
identifies all material parameters. It also considers microstructural disorder and its
effect on the rupturing process. Consideration of the relative magnitude of characte-
ristic lengths indicate that other methods are not applicable to this problem.

Simplifying assumptions introduced for purposes of illustration can be readily
removed at some expense of the tractability. However, even in its current form the
proposed model represent a radical change of basic concepts by emphasizing the
essential role of microstructural disorder on the evolution of process induced damage.
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MICROMECHANICS OF THE PROCESS INDUCED DAMAGE

EVOLUTION IN THERMOSETS

Dusan Krajcinovic and Kaushik Mallick1
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ABSTRACT

Present study focuses on the formulation of a micromechanically based analytical model

of the evolution of damage in thermoset resins during cure. Study emphasizes the effect

of the microstructural disorder on the macro response. To avoid introduction of arbitrary

fitting constants and parameters the problem is considered on three different length

scales. The proposed model consists of a system of equations governing the exothermic

chemical reaction, heat transfer and deformation. Effective properties of the solid and

distribution of stresses are determined using non-traditional micromechanical models.

I. INTRODUCTION

The principal objective of this study is to formulate a rational analytical model needed to

determine the damage accumulated in resins during the cure. Considerations of events on the

molecular and micro scales emphasizes the necessity for an appropriate description of damage

evolution which depends on all statistical moments of the distribution of stresses in the

disordered microstructure of the resin near the sol-gel transition. This study indicates the

arbitrariness of the continuum models which neglect the disorder of the resin microstructure near

the sol to gel transition. Consideration of relations between the characteristic lengths, intrinsic to

the evolving microstructure, underlines the limitations of traditional (mean field) methods of

micromechanics used for the determination of the effective material parameters and stresses in

the vicinity of the phase transition.

1 Currently: All Plastics & Fiberglass, Mobile, AL 36608
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II. POLYMERIZATION PROCESS

Polymerization of thermosets is a complex process during which the initial sol (viscous fluid)

transforms into a gel (intricate network of crosslinked aggregates). When heated in autoclave

monomers of a dilute solution diffuse and collide. A fraction of colliding monomers, which are

endowed with a sufficient kinetic energy, react and bond together into progressively larger

chains. This process, occurring at many sites simultaneously, generates many fractal aggregates

consisting of entangled molecular chains [MARTIN and ADOLF (1991)]. Topologically, the

structure of each aggregate resembles a Cayley tree as suggested by the Flory-Stockmayer

theory. The diameter of the aggregates typically reaches 0.01 to 0.1 4m [MARTIN and

WILCOXON (1989)] before they run out of "free volume" exhausting their "molecular

maneuverability and macroscopic fluidity" [ZALLEN, (1983)]. At this point aggregates become

too large to be able to change their position without deforming and displacing the neighboring

aggregates. Accordingly, the process crosses over to that of the bond percolation which is

characterized by a random formation of bonds between the stationary aggregates (which assume

the role of renormalized monomers fixed in the sites of a three-dimensional lattice).
During the percolation stage of the polymerization process aggregates linked together by

bonds form clusters which grow larger with time. At a well defined threshold value of the

fraction of links connecting individual aggregates, the correlation length (defined as the length

beyond which the cluster sizes are exponentially rare) diverges • -- ,o reflecting the emergence

of the infinite (spanning) cluster (gel molecule) of interconnected aggregates. On the macro

scale, the percolation threshold c -4 -,, or sol to gel transition, is discerned by a very steep

increase of the viscosity of the system and in the attainment of the shear strength and stiffness.

The actual elastic percolation threshold is defined as the connectivity p = P,, at which the

infinite (spanning) cluster emerges on the renormalized lattice. Final changes in material

properties take place when the temperature is decreased to the glass transition level. At this point

each chain locks into a given conformation rendering further conformational (entropic) changes



difficult [COWIE (1991)]. A conceptual scheme of the sequence of events is sketched in Fig.1.

Curing induced stresses in a crosslinked network are attributed to eigenstrains caused by

thermal and chemical shrinkage and temperature gradients. Chemical shrinkage reflects the

reduction of distance between reacting m-mers during the formation of a bond. Since the

collisions between n-mers and k-mers are random events the distribution of eigenstrains is

spatially and temporally random. Thermal shrinkage occurs during the cooling cycle. Local

fluctuations of stress and strain fields are magnified by the disordered geometry of the ramified

network of polymer chains. Thus, even though the average stresses just beyond the sol to gel

transition may be relatively modest the stress concentrations are sufficient to cause nucleation of

sub-microcracks and microcracks. Ubiquity of the process induced damage in polymers

[K-UKSENKO and TAMUZS (1981), KAUSCH (1987) and GUZ', et al. (1988)] is a testimony to

the effect of disorder on damage evolution.

MI. CHARACTERISTIC LENGTHS

The described polymerization process and the distinction between the micro and macro scales

are purely qualitative. A precise quantitative distinction between the scales requires consideration

of several characteristic lengths. The first of these lengths £ defines distance between the

aggregates at the point at which they become immobilized (at the crossover between the

aggregation and percolation regimes). At a first glance it appears that the length £ is not

important for stress analysis since the stresses are negligible prior to the formation of the gel

molecule (before the solid acquires shear strength). However, the length £ is important since it

defines the intrinsic length of the sub-microcracks [KUKSENKO and TAMUZS (1981)]

nucleated by the rupture of a single link connecting two adjacent aggregates. Hence, length £ is

an intrinsic microstructural length. Assuming that the smallest microcrack of interest is of the

size of the space between two aggregates £ must be selected as the resolution length to render

micromechanical analyses objective (mesh independent).

The linear specimen size L is also a characteristic length since the fracture strength is an
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extrinsic property of brittle solids (reflected by the conventional size effect).

The correlation length ý, defined as a maximum length over which the clusters of

interconnected aggregates are exponentially rare [ISICHENKO (1992)], is not only important in

its own right but is crucial in the process of the selection of the analytical model. The correlation

length ý(p) is defined as a function of the connectivity p of the network. The connectivity p is

defined as the fraction of links formed between the aggregates during the percolation phase of

the process. At the percolation threshold (sol-gel transition p = Pce) of an infinite lattice the

correlation length ý tends to infinity, by spanning the system and connecting two sides of the

specimen. Hence, at the percolation threshold the only evolving characteristic length is lost and

the microstructural geometry is rendered self-similar. Infinite cluster is a random, physical fractal

which is statistically self-similar. In other words the probability density function of the

considered property of this cluster does not exhibit spatial fluctuations. In the asymptotic

neighborhood of the percolation threshold (with p slightly in excess of p,,) the range of the self

similarity is finite. At lengths less then ý the geometry appears to be statistically the same as at

the percolation threshold (i.e. self-similar). On the scales larger than ý the network is statistically

homogeneous. Thus, the correlation length represents the upper bound below which the cluster

is self-similar. The property of self-similarity, reflected in the universality of the scaling laws

and percolation threshold Pe, will be repeatedly used in the sequel to this part of the paper.

In micromechanical models it is necessary to relate the actual random, inhomogeneous and

piece-wise discontinuous solid with an equivalent effective continuum. The mapping between

two media is based on the establishment of the equivalence of the properties and fields in a point

of the effective continuum and the corresponding properties of the actual solid averaged over a

volume of the material enveloping the considered material point. The smallest volume of the

material for which this correspondence can be established, at a given goodness-of-fit, is defined

as the representative volume element. The material properties are, therefore, the properties of the

representative volume element with a linear size Lr.

Having defined characteristic length and their influence on the homogeneity of the system it
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becomes possible to determine the range of the validity of methods of analysis. The utility of the

effective continuum methods is limited to the case when the defects in the lattice are small, i.e.

when the largest defects can be comfortably tucked into the representative volume element. The

domain within which the MMM (micro, meso, macro) principle of [HASHIN (1983)] and mean

field models are valid can be cast into an explicit form of an inequality

<< L <<«L (1)

where • is the correlation length of the defects (defined as cluster of missing links between the

aggregates forming the lattice nodes). Concentration of defects must also be small enough to: (a)

render the direct defect interactions a second order effect and (b) reduce the probability of

finding a large cluster of connected microcracks to negligible levels. At the incipient sol-gel

transition the condition (1) is not satisfied since the defects percolate through the specimen, i.e.
since the size of the largest defect cluster is singular c -4 oo (or c - L in a finite lattice). Second

of two conditions, related to the interaction of adjacent defects, is also not satisfied in the

neighborhood of the percolation threshold rendering the conventional continuum theories and

micromechanical models based on the effective continuum (or mean-field) theory inapplicable.

In summary, in the neighborhood of the percolation threshold

p p4c+ and -4oo (2)

the geometry and topology of the microstructure is statistically self-similar. Within this range

percolation models provide good estimates of the macro response. At modest connectivities p for

which a small enough representative volume element exists, such that inequalities (1) are

satisfied, solid is statistically homogeneous over a small enough volume needed to render the

mean field theories applicable. The macro response within the crossover regime separating the

self-similar and macro-homogeneous regime depends not only on the defect density but also on

the direct interaction between the closely spaced micro-defects. Determination of macro response

within the crossover regime does not admit elegant analytical solutions. This type of problem is

typically approached using numerical simulations and introducing switching functions which in

two limits blend into self-consistent and percolation solutions [THORPE and JASIUK (1992)].
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IV. CONTINUUM MODEL

Most of the existing literature [LEVITSKY and SCHAFFER (1974), HAHN and PAGANO

(1976), GUZ', et al. (1988), LI and BARBER (1989), BOGETTI and GILLESPIE (1989),

MALLICK and KRAJCINOVIC (1992a), etc.] related to the curing problem is focused on the

formulation of local continuum models. Based on the premise that all of the processes depend

primarily on the average stresses and strains these models are applicable only when the

microstructure is macro homogenous and the effect of the stress concentrations on the macro

response negligible. This is by no means true in the considered case. The geometry of the gel

cluster is all but regular. Absence of macro homogeneity renders the solid intrinsically non-local

and the rupturing sequence of links is a random process. However, for computational efficiency

it is necessary to formulate the continuum model as a general framework relating average

stresses, strains and temperature on the specimen scale. At p -- 1 the equations of this model

refer to an effective solid statistically homogenous over length Lr << L. Near the percolation

threshold p -• p+ these equations and parameters refer to the specimen, i.e. gel cluster.

IV.1. Heat Conduction

Process of heat conduction is governed by the partial differential equation of diffusion type

[CIRISCIOLI and SPRINGER (1990), MALLICK and KRAJCINOVIC (1992a, 1992b), etc.]

(pCpT) - K, - (i=1,2 3 3

In general, density p, thermal conductivity K, and the specific heat Cp depend on the extent of

the reaction. Total exothermic heat energy H, generated during the reaction is assumed to be a

constant for a specified resin and curing regime. Second term on the right hand side of (3)

represents the heat liberated during the exothermic reaction of bond formation. The parameter

z(y,t) represents the fraction of molecular bonds (probability that a given bond between two
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molecules exists) and is, for a simple polyesterification reaction, related to the degree of cure

a(y,t) by the expression derived in STOCKMAYER (1943)

X = a2 (4)

Relation (4) is crucial for experimental verification of the model since the degree of cure a

can be measured using scanning calorimetry methods [DUSI, et al. (1987)]. Another parameter

used in percolation models to quantify the connectivity, i.e. the probability of finding a link

connecting two aggregates, is p. This parameter cannot be directly measured. The parameters

p(y,t) and X(y,t) are linearly proportional suggesting the following relationship that satisfies

asymptotic behavior at percolation threshold

p =-Xs H(1-Xs) (5)

In (5) H(x) stands for the Heaviside function while x.s is defined as a fraction of monomer bonds

at which the aggregates cease to be mobile and the process crosses over from aggregation to

bond percolation. The expression (5) preserves the asymptotic behavior of p and x in the

neighborhood of the percolation threshold. The need for this relation is further emphasized by the

fact that during the aggregation phase of the process p = 0. The distinction existing between the

three parameters (7, a,p), which define various aspects of the connectivity of the gel network,

has neither been fully recognized nor appreciated in the existing literature.

IV.2. Kinetic of the Chemical Reaction of Bonding

The equation of the rate of chemical reactions can be derived from the collision theory. The

rate at which the bonds are formed depends on the probability that two m-mers, having sufficient

kinetic energy to overcome the molecular repelling forces, will collide and react within a unit of

time. ,According to the Boltzmann-Maxwell statistic [GLASSTONE, et al. (1941), etc.] this

probability assumes the form of the Arrhenius dependence on the temperature T and activation

energy U. The probability that a bond will be formed during the collision is proportional to



exp(-UIkbT) where kb is the Boltzmann constant. Activation energy U is defined as the

difference between the sublimation energy Uo and the free energy 0, i.e.

U = Uo - (D = Uo - (W - TS) (6)

The difference U0 - (D represents the energy barrier, i.e. the energy which must be supplied for a

bond between two aggregates to either form or rupture [REGEL', et al. (1974) or KRAUSZ and

KRAUSZ (1988)A. The free energy D represents the difference between the internal energy W

and the product of the absolute temperature T and entropy S.

The net rate at which the links between the aggregates are formed during the percolation

phase is equal to the difference between the rates at which they form and rupture. The probability

that a link will form in a unit of time is, according to the Maxwell-Boltzmann statistics, equal to

toI exp(-Uo / kbT), where to is the period of the free thermal vibration of an atom. On the other

hand the probability that a link will fail in a unit of time is to exp[-(Uo - 0i) / kbT]. The

probability that a link will fail depends on the free energy it stores. Hence, the probability of

rupture changes from one link to the other. The net rate of the link accrual [MALLICK and

KRAJCINOVIC (1992b)] is, therefore, equal to

dD p 1) _JOIN p Iexp Uo_-i)-IT (_7)b
dt te kkT T N bT. toe7

where N is the total number of links in the undamaged lattice (formed by aggregates as sites), p

and (l-p) the fractions of extant and absent links between aggregates, respectively. Expression

(7) assumes that the reaction is simple, i.e. that it does not involve "reaction loops". Equation (7)

can be appropriately adjusted for a given reaction type. It is interesting that the second term on

the right hand side of (7) was not introduced by GUZ', et al. (1988) and BOGETTI and

GILLESPIE (1989) even though they also considered the cure induced damage.

The number of links that will rupture within the time interval (O,t) can be obtained integrating

the second term on the right hand side of (7)
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t N'(s) ( Uo (8)

= W)f--1Xexp -_ _(8)

N~s) =1 tokbT(s)
0 __ -

Thus, the equation (7) can be rewritten in a compact form as

dp 1 (U
=-Pexp ---- ilp-w) (9)

d-- to L, T)

where

w = fexp ()dl (10)

with 5(1)being the probability density function of free energies stored in individual links.

Expanding the exponential function in the argument of the integral in (10) into an infinite Taylor

series it follows that

W = '_,---'! " ()d=Dp d( (D= ((p) (1Jo.=obT ,kbT
0 n=! kbT) n=! 0kbT kbTIJ(k ni o

where

Mn(Op)= f9P"P(q)dqp (12)

0

is the n-th statistical moment of the distribution of the normalized free energy q) (D / kbT stored

in the individual links of the gel network. Hence the rate at which links rupture depends on all

statistical moments of the force distribution in a disordered network. This alone makes this both

different from and much more complicated than a typical mnicromechanical problem.

IV.3. Stresses in the Curing Slab

Finally, it is necessary to derive the equation relating the macro (average) stress in the slab

and the eigenstrains related to the thermal and chemical shrinkage. The well known expressions
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for the relaxation of polymers due to the changes in the conformations of molecular chains

associated with the disentaglements and diffusion of segments [MEARES (1965)] must be

changed to accommodate the changing connectivity p(t,x) of the network. The character of the

viscoelasticity is determined by the vibratory motion of individual chain segments and the free

length of chains between two adjacent crosslinks. The characteristic time of relaxation depends

on the state of connectivity and the frictional effects which inhibit changes of conformations.

Continuum theory of the viscoelastic response of crosslinked polymers based on the Rouse

and Zimm models and the reptation dynamics was recently developed in [MARTIN, et al.

(1989)]. Elastic properties of a curing polymer change with the extent of crosslinkdng (growing

degree of cure a). Realizing that the change in the degee of cure ax results in the change in scale

(defined by the change in the correlation length ý) ADOLF and MARTIN (1990) suggested a

redefined time to account for the proportionality between the relaxation time of a cluster and its

size. The ensuing time-cure superposition model approximates the viscoelastic deformation of

curing polymers by.a sequence of states corresponding to discrete times defining the extent of the

chemical reaction.

The relaxation components of the strain tensor for a material with constant equilibrium shear

and bulk moduli are usually written in the form of a hereditary integral [MEARES (1965),

RABOTNOV (1977)]. During a curing process the connectivity p(xi,t) is not a constant.

Hence, the ratio between the rate of the relaxation and the rate of cure changes. Immediately after

the emergence of the gel the extent of crosslinking is very small, the gel disordered and the

relaxation times very long compared to the cure time. At advanced stages of the curing process

the free lengths of the polymer chains become much shorter. Consequently, the rate at which the

stress in the chains relaxes becomes small in comparison to the rate of cure.

In a general case of an arbitrary ratio between the rates of relaxation and cure, MARTIN and

ADOLF (1990) suggested that the equilibrium component of the deviatoric shear stress can be

written in form of the following expression
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=eij(s) + WdG[p(s)]s (13)
f~(t =ýS fJ G.[t)y-s Jef ds
0 0

where si, ej are the components of the deviatoric stress and strain tensor. Also, ejeff is the

effective deviatoric strain tensor which couples the memory effects of the relaxation and the

equilibrium moduli of the curing polymer [MARTIN and ADOLF (1990)] defined by
$ de-,.(u)

e 17, f~[s -u, p(u)] de1 ()du (14)(S) f 

(du0

The shear modulus is defined as usual by a sum of the equilibrium and relaxation moduli

G(p,t)= G*(p)+Gr(p,t). The non-dimensional (normalized) relaxation modulus in (14) is

defined by the ratio

Gr(s) (15)
Gr (0)

It can be shown that the general constitutive expression (13) tends to proper behavior at two

limits of the ratio between the rate of cure and the chain relaxation times.

The available experimental data related to hereditary materials indicate that the volumetric

deformation is elastic, i.e. that the bulk modulus does not change appreciably during a

viscoelastic deformation [RABOTNOV (1977)]. This assumption is generally accepted on the

face value [MUKI and STERNBERG (1961), etc.] even though in the present case it is not clear

that the reptation effects are absent in tension. Assuming that the viscous effects are negligible

the bulk modulus is only a function of the connectivity p. The corresponding constitutive law

which relates the hydrostatic stresses and strains is then
I

Cr (t) = f 3K[p(s)]+d[Ek, (s) - 3 * (s)]ds (16)

0

where T*(s) is the volume averaged isotropic eigenstrain in the material due to the thermal

dilatation "Th and the chemical shrinkage Esh. By definition, volume averaged chemical

shrinkage is directly proportional to the number of links formed between the aggregates such that
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g* =E•th _-gh = oa(T_ T,)- P-Poe f(7
1- nC

1_- c -c (17)

where a, Tce and Tf are the coefficient of thermal expansion, temperature at the elastic

percolation threshold and the final extent of the shrinkage at the cure end (p =1).

To simplify the computations consider a weightless resin slab of constant thickness 2ho

infinitely extended in the (x,z) plane. Temperature on the traction free slab faces y = ±+2o is

equal to the autoclave temperature T0 (t) which is a known function of time

T = Ta(t) @y=±ho (18)

In absence of externally applied surface tractions (which are typically too small to be of

consequence) all volume averaged macro-parameters such as the average temperature T, stress a

and strain E are only a function of time and coordinate y. The only non-vanishing stresses and

strains are o- -a, and e The final integral equation for the macro (volume averaged) stress in

the viscoelastic slab with changing connectivity can be, after some rather cumbersome

manipulations, cast into the following form

-2 dau(y,, s_3d___,) +f Eeff(s)]Sax(y~t) + {G*[p(s)]{[] "3+Jgf~s
2 ds ds Yd

o 0

fJG [t SdP(S)]j 2  dcxa(',s) dT*(y,'s) 0 (19)
+ []3K (s)] ds ds

0

The initial conditions are that at t = 0, stresses a,, = a = 0 are equal to zero, while T = Tce

and p = Pce

The system of three coupled equations (3), (9) and (19), subject to mentioned boundary and

initial conditions, in terms of three volume averaged variables a, T and p, suffices for the

determination of connectivity, stresses, strains and temperature in the slab for a given regime of

autoclave temperatures. As already stated this conclusion implies that the term (11), i.e. the

effective properties and the exact distribution of forces in the renormalized network, can be

determined at any connectivity p.
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V. MICROMECHANICAL CONSEDERATIONS

Material parameters in (3), (9) and (19) are, in fact, effective parameters derived by averaging

over the representative volume element. As such they can be determined either by using mean-

field considerations (if the criteria for homogeneity (1) are satisfied) or applying the arguments

of the percolation theory (if the geometry and topology of the specimen are self-similar). In

addition to the material parameters it is necessary to determine the elastic properties of the links

of the renormalized lattice which connect the adjacent aggregates.

V. 1. Stiffness and Runture Strength of a Link Connecting Two Aggregates
* Each of the links of the renormalized lattice represents itself a network formed by several

molecular chains crosslinked to each other. On the molecular scale the deformation modes of a

single chain include: change of conformation (segment rotation or gauche-trans transformation),

cavitation, slip and/or chain scission [KAUSCH (1987)]. To determine the "stiffness" of a chain

it suffices to consider only the change of conformation and its effect on the flexibility. A

stretching polymer chain passes through a sequence of a discrete equilibrium (minimum free

energy) states which correspond to different conformations. In the course of stretching process

very little energy is stored in the bonds. The change in the free energy is almost entirely

attributed to the decrease in entropy (diminishing probability of corresponding conformational

states). The deformation process of the described type belongs to the class of entropic elasticity.

If the force on a single free and highly deformable links is maintained for a long time the chain

reverts to its most probable conformation converting the excess energy into heat.

The stiffness of a single chain can be determined analytically only for small deformations of

freely jointed single chains. In all other cases determination of the link stiffness requires

simplifying assumptions. Force-displacement relation in a crosslinked chain network combines

the competing effects of elastic stretching (enthalpic effects) and conformation changes (entropic
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effects). A crosslinked network is both dissipative and energy storing. Nevertheless, at small

deformations the force-elongation relation remains linear but the spring stiffness is not a

constant.

Consider a crosslinked network consisting of Nchains each of which is formed of n,

segments. The average free energy stored in a segment of i-th link is Oi(p) =Di i[Nens(p)].

Free energy stored in the link can be estimated assuming that: all chains have the same length

and that the end-to-end distances of each chain are defined by the Maxwell probability density

function [PEREPECHKO (1981)]. Subject to these assumptions the average free energy stored in

a segment of the i-th crosslinked network connecting two neighboring aggregates is

ip) _i = 3kbT 2 (20)NOns(P) = Nn P 2ns(p) 2 r(0

where £ is the average distance between the aggregates and ns(p) the average number of

segments in a chain. As the number of segments in a crosslinked network increases during

curing the free energy decreases and the activation energy increases. The rate of rupture of links

connecting the aggregates rupture (10) is now

w= 1-Jfp (rp)ddo where T= (21)
n=O *' kb

where 5(T) is the probability density function of the distribution of free energy stored in lattice

links. Normalized free energy (p in (21) is redefined in view of the postulated rupture process of

radicalized chains. Mechanical energy stored in a link serves only to lower the energy barrier

through its contribution to the free energy. The increase of the temperature does not only

decrease the argument of the exponential function in (7). It also increases the free energy

through the entropy term and the rate of formation of free radicals (reducing the time needed for

the rupture of a link caused by the scission of a single chain). Hence, the rupture of links

connecting the adjacent aggregates is a random process due to the non-deterministic nature of the

spatial and temporal fluctuations of thermal energy.

Formation of a crosslinked connection (link) between two adjoining aggregates is not
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instantaneous. Thus, the link "stiffness" varies with time during its formation. Link rupture is a

much more rapid process of chemical dissociation which is also not instantaneous. Since the time

needed to form and rupture a link is still short compared to the cure duration it will be assumed

that the spring stiffness remains constant from its formation to its rupture and that the link

rupture is instantaneous. These assumptions are entirely consistent with the selected resolution

length according to which events on molecular scale are smoothed out.

V.2. Elastic Modali

The material parameters in the heat conduction equation do not exhibit singular behavior in the

neighborhood of the percolation threshold. In fact they change only slightly and to simplify the

derivation they will be considered as being constants [TWARDOWSKI, et al. (1993)].

Additionally, it will be assumed that the bulk modulus changes with the connectivity in a manner

defined by the self consistent approximation, i.e. that in tension

K(p) P p - PcceP
K, 1 - PC,

where K, is the bulk modulus of the glassy phase and (22)

K=0 P <- PCe

Expressions (22) ignore finer points of the scaling laws in the asymptotic neighborhood of the

percolation threshold and the interaction of defects in the crossover regime [SAHIMI (1986)]. A

more sophisticated expression for K(p) can be derived using blending functions [THORPE and

JASILJK (1992)] but the gain in accuracy will be minimal since the crossover region is typically

very short [FENG, et al. (1985)].

At the percolation threshold the shear stiffness of the slab is, by definition, equal to zero. As a

consequence of similarity the shear stiffness is expected to follow a universal power law

immediately after the slab passes through the gel point. This expectation was, indeed, observed

in experiments (summarized in [MARTIN, et al. (1989)]) in which a polymer at gel point was

subjected to an oscillating strain field of constant amplitude. The divergence of the viscosity and
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the equilibrium shear modulus in the asymptotic vicinity of the gel point is defined by the scaling

laws [ADOLF and MARTIN (1990)]

77 -pce -pl-k and G- lpe - pIZ (23)

Universal exponents in (23) are z = dv = 8/3 and 0 < k < 4/3, where d is the dimensionality and

v the exponent for the correlation length ý. As the connectivity p is increased beyond the

percolation threshold the clusters grow in size. Large clusters diffuse slower than the small ones.

Thus, the degree of the cure is reflected as the change of the scale. Actual time must be

renormalized dividing it by the longest relaxation time "r, which dominates the dynamics of the of

molecular chains. The longest relaxation time is defined as a time needed for a chain of length

to diffuse through its own radius. The longest relaxation time

"0 ~ ~ ~ ~ 1 _ PC. •[ -Pe(z+:) (4

"Cz = f tGT(t)dt f GT(t)dt = -'-, I- (24)
0 0

also represents time at which the response crosses over from a simple to a complex viscoelastic

regime. Accounting for the fact that the decay crosses over form the power law to an exponential

law as the time t approaches the longest relaxation time the expression for the relaxation shear

modulus for the bulk polymer melt was specified by ADOLF and MARTIN (1990) as

Gr(r) = CGjij (1- 23ep -04p > Pce (25)

where C is a constant which depends on the shear modulus of the glassy phase. Expression (25),

which represents the statement of the cure-superposition principle, is valid for a system in which

the solid phase (gel) percolates. The shear resistance is provided by the infinite cluster (gel)

which dominates the deformation process. The simple scaling law (25) was shown to replicate

the experimental data with a surprising accuracy [MARTIN, et al. (1989), ADOLF and MARTIN

(1990)] which persists well into the mean field regime.
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VI. DISTRIBUTION OF THE FREE ENERGY IN THE LATTICE

VI. 1. Distribution of Forces in Links in the Neighborhood of the Percolation Threshold

Determination of the entire distribution of forces in links of the renormalized lattice, needed

to compute the rate at which the links rupture from (11), is by far the most difficult aspect of the

problem. At the percolation threshold gel cluster is very disordered. Forces in cutting (red) links

can easily be two orders of magnitude larger than averages. Lattice simulations represent a

popular strategy for the determination of the forces in individual links. For example, the

distribution of the free energy stored in individual links of 32x32 planar triangular central-force

lattice, determined for several different realizations of the same statistics using conventional

methods of structural mechanics, is plotted in form of a binned histogram in Fig.2a. The same

distribution averaged over 100 realizations is plotted in Fig.2b. Tail end of the distribution, i.e.
number of links storing large free eneries, changes significantly from one physical realization to

the other and strongly depends on the lattice size L = It (where £ is the link length). Moreover,

the probability to find a link carrying a large force will increase with the size of the lattice. These

two aspects (referred to as the mesh sensitivity) are especially important since the objective

modeling of typical resin specimens would require very large lattices which are unsuitable for

repeated simulations needed to form a statistically representative sample.

For a lattice analysis to be objective the resolution (bond) length £ must be equal to the

inherent characteristic length of the microstructure (size of the nucleated sub-microcracks). In the

present case, the characteristic microstructural length is equal to the average distance between the

adjacent aggregates at the crossover from aggregation to percolation. The initial length of the

sub-microcracks [KUKSENKO and TAMUZS (1981), KAUSCH (1987)], nucleated in the

course of the rupture of a single link, is of the order of £ = 0.1 pm. Thus, to preserve the
objectivity, a cubic lattice occupying a cube with a volume of only 1 cm3 should be modeled by a

lattice having 1015 nodes rendering direct simulations [such as those by TERMONIA, et al.

(1985)] impractical if not impossible. A lattice is a true model of a microstructure only if: (a) the

link length £ is equal to the distance between two adjacent aggregates, (b) the force-elongation
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relation in a link is defined by (20) and (c) its type is defined by the functionality of the

monomers. Lattices with link lengths which are orders of magnitude larger than I are

approximations which will in this case lead to erroneous results.

According to the expression (11) the rate at which links rupture is dependent on the

distribution of energies stored in individual links which is defined by an infinite series of

statistical moments M,(q'). Assuming that all links have identical stiffness k it follows that the

energy stored in links is 2 (ci = kf7. With the help of the identity ý(-/O)d(V-) = 5(I)dI the

above described problem may be reformulated in terms of the forces carried by individual links.

Since the forces in links of the network in the asymptotic neighborhood of the percolation

transition are attributable primarily to the chemical shrinkage the probability of finding a large

compressive force in a link is negligible. In the considered slab only the links in the (x,z) plane

are subjected to substantial tensile forces. Hence, to simplify the analyses further the actual three-

dimensional lattice is approximated by a stack of parallel two-dimensional triangular central-

force lattices in (x,z) planes. Consideration of three dimensional lattices does not present

conceptual problems but is, nevertheless, computationally few orders of magnitude more time

consuming. Therefore, it seems reasonable to focus on the two-dimensional problems first.

Consider first the distribution of forces in links of a two-dimensional lattice the neighborhood

of the percolation threshold. The mass of the spanning cluster (zero-th moment) scales with the

lattice size as )ZD where (D = 91 / 48). As a result of its highly ramified structure most of the

links of the spanning cluster do not carry any load. Within the node-link-blob picture, these

cantilevered links (dangling ends) account for a large part of the spanning cluster mass. Only a

fraction of the links belonging to the spanning cluster can store free energy. Links that carry non-

zero loads form the spanning cluster backbone. The mass of the backbone is proportional to
00

E n(f,L) -- ,)LD (26)
f=0.

where Db = 1.62±0.02 (in two dimensions) is also a universal exponent. The cutting (or red)

links connecting the blobs carry largest loads. The number of cutting links scales as ),l/v where
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(v= 4/3) [CONIGLIO (1981)]. The universality of these scaling laws and exponents (D,Db, v)

is the consequence of self-similarity (as the correlation length ý -- oo) of the lattice geometry in

the neighborhood of the percolation threshold. The ultimate task is to determine the number of

links n(f,X) carrying different forces f in a lattice of size 2. = L / £ which is geometrically

represented by a binned histogram of forces in links. Statistical moments of the distribution of

forces in the neighborhood of the percolation transition are defined by

*0

Mk(-) = >_fkn(f ',) f fkn(f ,L)df _ Zz(k) (27)

0

In contrast to fractals (such as mass of the backbone) each statistical moment of the distribution

of forces in links scales with a different exponent. Computation of the rate at which links rupture

(11) is reduced to determination of the set of size-independent exponents z(k) (k--0,1,...,oo).

Instead of performing repeated numerical simulations on lattices to determine z(k) in (27) it

is much more efficient to make use of the existing data for the current transmitting fuse networks

[HANSEN (1990), ROUX and HANSEN (1990), etc.] and establish an analytical transition

between fuse and elastic networks [HANSEN and ROUX (1988)]. Consider, therefore, first a

fuse network for which

1

[Mk(0)]C = .iknc(i,2 .) f-jkikn,(i, L )di ,,xc(k) (28)
0

where n(i,2,) is the number of links carrying current i . The subscript "c" indicates a constant

current ensemble, i.e. a set of networks carrying the identical current. The product ikn(i,)x) is

very small at both limits (i = 0,1) (since the number of cutting links is very small) and peaks at

an intermediate value of current ik. Hence, the integral in (28) may be estimated using the

method of steepest descent or saddle point [see de ARCANGELIS (1988), HANSEN (1990) or

STAUFFER and AHARONI (1992)] as

Mk = n(ib,2• )iif (29)
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The current ik at which the integrant in (28) peaks is given by extremrnum condition

d{ln[n(i, )]l = -k (30)
d[ln(i)] ji.-i

At the percolation threshold every function is expected to scale as a power law. Hence

i2 ,•A-a(k) and n(ijk.,2 ) , Zf(k) (31)

Substituting (31) into (29) and comparing the ensuing expression with (27) it follows that

x(k) = f(k) - ka(k) (32)

The exponents in power laws (31) are then

a(i,L)= dk = n(i) f(i,2A,) = x(k) + ka(k)= ln[n(i,2L)] (33)
dk In(X)' (n(,)

Parameter a(i, X), referred to as the Lipschitz-Hoelder exponent [PYRAK-NOLTE, et al.

(1992)), defines the spatial distribution of currents. Function f(i,X) is the fractal dimension of

the support of current distribution. As shown in HANSEN (1990) and STAUFFER and

AHARONI (1992) the exponents (33) are indeed independent of the lattice size X. Consequently,

the graphs in the (f,a) space computed for different lattice sizes X do collapse on a single,

master curve. The function f[a(k)] (33.b), representing an infinite series of exponents xc(k), is

referred to as the multifractal spectrum, and is as universal as the scaling laws (exponents). A

straight line with slope (-k) is tangent to the curvef(a) at point ak defined by (33) which provides

the main contribution to the k-th statistical moment (29). Hence, the apex of the curve in Fig.3

corresponds to the zero-th statistical moment f[a(k = 0)) = Db. The point of the curve with a

vertical tangent f[a(k -.- 0)] = 1/ v corresponds to the statistics which is dominated by the

cutting crosslinks. It can be shown that the curve (33) is strictly convex [HANSEN (1990)].

Even though the analytical expression for the scaling exponent xc(m) is not available the

simulations in HANSEN (1990) can be fitted by the following expression

xc (m) = 0.75 + 0.87e"-0 676 m (34)

Exponents computed from (34) satisfy the analytical results for the required limits as m --ý 0

(mass of the backbone), (m --4 -) mass of cutting links and the lattice conductivity (m = 2).

Extensive numerical simulations in support of the above discussed representation of the
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multifractal spectrum make a compelling argument for its utility in the determination of the

distribution of currents in a fuse networks. However, the elastic percolation in central force

lattices and conduction percolation in fuse networks represents two different universal classes.

Thus, the multifractal spectrum (34) cannot and does not apply to elastic percolation problems.

Consider now a lattice of size L = Re subjected to tractions applied at its boundaries. As a

result of the vectorial nature of the equilibrium conditions the forces in cutting links can be much

larger than the applied forces and can, in the limit, tend to infinity. Assuming that the k-th

moment of the distribution of the square root of the energy stored in the lattice links scales as a

multifractal (similar to (28)) it follows that

It is reasonable to conjecture that the transition rule between two universal classes can be

inferred on the basis of the relation existing between the scaling exponents for the effective

compliance yf(2 ) and resistance x,(2). Using the results summarized in SAHIMI (1986) it

follows that

y~f (2) = x,(2) + 2 (36)

The HANSEN and ROUX (1988) conjecture consists of assuming that the relation (36),

which is true for the second moments, will remain valid for all moments of the two distributions.

Scaling exponents of two distributions (27) and (35) are assumed to be related as if (36) is true

for all n

yf(n) = Xc(n) + n (37)

Subscript ':f' stands for the constant externally applied force ensemble.

Consider a two-dimensional, elastic, central-force network and denote by F, X and S the

external tensile forces applied at two opposite ends of the network, corresponding elongation and

effective compliance of the network, respectively. Observed network is near the percolation

threshold. Total elastic energy stored within the gel cluster is for unit stiffness of individual links
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F F2y= (38)2 2 .a

where 0 is the free energy of a'crosslink and with sum extended over all crosslinks forming the

gel backbone. For a constant unit force F = 1, the effective compliance of the gel cluster (second

moment of the free energy distribution) scales for a constant force ensemble as

[1 = _ f _,-2 (/- .) ýFD ;yI(2) (39)

0

Next task is to perform the transition from the constant force to the constant free energy

ensemble. The total free energy is equal to D = F 2y / 2, where the effective network compliance

S is constant during entropic deformation only at small "strains". Thus, for a constant force

F = 1 it follows that

[Mklee = kl-2[M ]. (40)

where the subscript "ee" refers to the elastic energy ensemble. From (39) and (40) it follows that

Yee(k) = yf (k) - .yf(2) (41)

In the present case the control parameter is the energy density. Since the total energy of the

lattice scales as Z;d (where the dimensionality d=2), using (37) and (41) it finally follows that

yd (k) = y7f (k) + k k yf (2) = xc (k) - kXc (2) (42)

where subscript "ed" refers to a constant energy density.

The expression for the scaling exponents for all statistical moments of the distribution of free

energy stored in links, derived from (34) and (42), has the following form

yd(n) = 0. 7 5 + 0.5In + 0. 8 7 e -0.676n (43)

where as required Yed(O) = Db = 1.62and Yed( 2 ) = 2 (since F=1).

The analytical expression for the multifractal spectrum is from (33.a)

f[a(n)] = 1.51-1.48a + 0.87(0.87-1.7a)log(0.87 -1.7a) (44)

The multifractal spectrum f(a) vs. a, defined by (44), is plotted in the Fig. 4.

The scaling law (44) for the statistical moments of the energy stored in the links of the
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network is based on the conjecture (37) and should be verified by numerical simulations on

lattices. This task was undertaken by HANSEN and ROUX (1988) who performed extensive

simulations on triangular central force lattices ranging in size from 30x30 to 80x80 nodes. The

results predicted by the multifractal formalism were in very close agreement with numerical

simulations for all low order moments (up to n=4). Errors of about 15% for n=5 should have

been expected in view of the relatively small lattices and modest statistical samples (only 50

realizations on largest lattices). In summary, the proposed multifractal formalism describes the

microstructural disorder in the neighborhood of the percolation threshold with a remarkable

combination of accuracy and simplicity.

VI.2. Distribution of Forces in the Links in the Qff-Threshold States

The lattice disorder, and the attendant fluctuations of forces in crosslinks about the mean

value, is largest in the asymptotic neighborhood of the percolation (connectivity) transition.

However, at this stage the mean force in the network is minimum (almost zero). Thus, largest

stress concentrations may take place at larger connectivities p. To establish the phase of the

curing process during which the microcracks are most likely to nucleate and grow it is necessary

to extend the derived multifractal scaling laws to the off-threshold states (p > Pce).

As a first step consider an infinitely large lattice 2 - c, which contains a relatively small

fraction of ruptured links (i.e. a state p -4 1 far away from the percolation threshold). The

distribution of the energy stored in links becomes fractal (dependent on the average mass of

extant links - mean field case) such that for p - 1 the distribution of energy stored in links is

n(4(_D_, ),p -4 1) !,f " (45)

where f0 = 2 since the number of links storing energy must scale as the "volume" of the

considered two-dimensional network. In a perfect (undiluted) network the scalar quantity ,T

(free energy density) is independent of the network size. Thus, since

(46)

it follows that ao = 0 at p = 1. Consequently, in an undamaged lattice the multifractal spectrum
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collapses on a single point (ao,fo) in the space of the rescaled energy and energy distribution

(independent of the length scale). To determine the distribution of energies stored in individual

links of the lattice in an off-threshold state it is necessary to define the rule governing the gradual

evolution of the scaling exponents from the state (a, = O,fo = 2) in a pristine lattice (p = 1) to

the multifractal spectrum (42) at the elastic percolation threshold (p = Pc,). At an arbitrary state

(1 > p >Pce) energy distribution in the elastic networks can be described by scaling laws [ROUX

and HANSEN (1989), HANSEN, et al. (1991)] as

n(- F-DZ,,p) . ý,F(f) and -F->(2L,,p)o . ,2 (47)

The function F(P3) reflects the multifractal nature of the distribution of forces in the critical

state. In the pristine state all diagonals of a triangular central-force lattice carry the same force,

and the distribution of forces shrinks to a single point. In critical state (elastic percolation) the

distribution of forces ranges from zero (dangling ends) to very large magnitudes (cutting links).

The band-width of the force distribution increases gradually in proportion to the accumulated

damage (decreasing connectivity p). In order to define the relation between the band-width of the

force distribution growth and the increasing disorder ROUX and HANSEN (1989) and

HANSEN, et al. (1991) introduced an intensive thermodynamic variable
=n(_) (48)

ln(,,)

which plays the role of the control parameter (instead of the number of ruptured links) or "time".

The corresponding intensive thermodynamic flux is

P(C) = C'a (49)

Statistically (49) defines the band-width of the distribution of free energies stored in the links of

the lattice. This band-width depends on the lattice size and current connectivity p.

The respective intensive histogram is

F[P (C), C] = 2- C[2 - f(a)] (50)

Evolution of the multifractal spectrum with the change of the connectivity p is plotted in Fig.4.

The final expression for the scaling law for the histograms of links binned with respect to the

energy they store can be derived combining expressions (44), (47) and (49) in the form
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F6C,=2- 0.91.44 08- 0.7-.p In 0.  87-.7 (51)

An approximate analytical expression for the multifractal spectrum (constant energy density

ensemble) can be derived using the Legendre transformation (33) and (43, 51) in the form

y,, (n, p) = 2- 4(p)[l.25 - 0.512n - 0.87 exp(-O.676n)] (52)

For current purposes it suffices to notice that the scaling law (47), with (52) fully determines

all statistical moments of the distribution of energy stored in each link in both critical and off-

critical states (i.e. for each Pce -<5 p •1 and arbitrary lattice size ),). In conjunction with equation

(19) these expressions provide the needed background for the determination of an analytical

solution for the rate at which the crosslinks rupture during the curing process in a two-

dimensional central-force network of arbitrary size.

In all cases of practical importance (when the linear size of the slab exceeds few millimeters)

the networks must be very large. The probability distribution density function of the energy

stored in crosslinks can then be written dividing the distribution of energy by the total surface

area of the network as

"n(l/ 2 ' ', P) C -2 (53)

where C1 is the non-dimensional amplitude which characterizes the backbone mass. The n-th

statistical moment of the above given probability density function 5((I, X, p) is then
CO

[M,]= f OZ(n) (54)

0

Exponents of the scaling law for the moments of the statistical distribution of energy stored

in the crosslinks of the central-force network can be derived substituting the identity

S=((I/ 2 )d((I)V2 ) into (35) and comparing the result with (54) in the form

z(n) =y(2 n) - 2 (55)

Using (52) in (55) it finally follows that

z(n, p) = C(p)[-1. 2 5 + 1.03n + 0.87 exp(-1. 35n)] (56)
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The exponents of the scaling law for the statistical moments of the distribution of energy

stored in crosslinks depends on the correlation length ý and connectivity p implicitly through the

parameter g in (56). However, the dependence of the correlation length on the fraction of extant

crosslinks (connectivity of the lattice) p is different in the mean field and percolation regimes.

For present purposes it seems reasonable to use an approximate expression

•()- l"pcej

which smoothly interpolates range between the limits x(p = Pce) = 1 and x(p = 1) = 0. Exponent

m in (57) is an adjustable constant taken as an integer larger than unity.

The expression (54) for the moments of the energy distribution can now be rewritten as

Mn = C ) (58)

Two constants C in (58) are estimated from the first two moments of the energy distribution
00 CO

M, = f y(D)dI = pb =Cizz(o) MI= f P(P)d(D = z avg =C1 C2 !z(1) (59)

0 0

where Pb is the number of bonds (mass) in the backbone and (Davg the average energy stored in

the bonds of the backbone. Since the energy density ( D 3 is an intensive property from (58) it

follows that z(1) = 0. Final expression for all statistical moments follows form (58, 59)
-- = C-n(Dn ýz(n)

Mn- 1 "avg" (60)

Parameter C1 is determined by fitting numerical simulations [MALLICK (1993)] for the first

statistical moment (which is not nearly as sensitive the higher moments).

Rate at which the links rupture (11) can finally be rewritten in view of (60) as

a -n2z(n) where =avg f ý/(€)d€ (61)
00

The rate of link accrual can now be determined analytically from the expression (7), in

conjunction with (56, 57, 61), for any specimen size 2L., without time consuming numerical

simulations.
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VII. ILLUSTRATIVE EXAMPLE

Utility of the above formulated model can be illustrated on the example of the epoxy resin

known as diglycidyl ether of bisphenol A (DGEBA). Material parameters for the selected resin

were taken from LOOS and SPRINGER (1983), BOGETTI and GILLESPIE (1989) as:

conductivity KT=0.167 W/(m K), resin density p= 1.26103 kg/M3, specific heat Cp=1.26-103

KJ/(kg K), heat of reaction HT- 474 KJ/kg, coefficient of thermal expansion act = 6.2.10-5 (/oc),

final shrinkage strain ej= 0.02, equilibrium shear modulus of the fully cured resin G,,(p = 1)=

1.06-103 MPa and the equilibrium Poisson's ratio v., = 0.3. The activation energy of the resin

was assumed to be Uo=2.10 9 J [REGEL', et al. (1974), TERMONIA, et al. (1985)]. The period of

molecular vibration to= 10-12 sec was assumed to be temperature independent [TERMONIA, et

al. (1985)]. The autoclave temperature regime is shown in Fig.2 of this paper. The temperatures

are To=250C, Tf=1250C while the times are t1=2 hrs, t2=4 hrs. and t3=6 hrs..

The average diameter of polymer aggregates was assumed to be 300 A and the distance

between the aggregate centers £=0.05 prm [ERATH and ROBINSON (1963, MIJOVIC and

TSAY (1981)]. Slab thickness and length were taken to be 2h=1 cm and L=0.5 m, respectively.

Consequently, in order to keep the resolution length as being equal to the size of the distance

separating two aggregates the number of links in one row should be 2. = L / =- 107. This

illustrates the magnitude of the numerical effort associated with mesh-independent numerical

simulations on lattices. The rigidity percolation threshold of the fcc lattice was taken as

Pce = 0.5 [FENG, et al. (1985)]. The degree of cure ac at the gel point is found to occur between

0.55 and 0.8 [PLAZEK and FRUND (1990)]. Thus, 0.3 < %ce < 0.64. In computations it was

assumed that Zce == 0.55.

The evolution of temperature, degree of connectivity and fraction of ruptured links with time

are depicted in Fig.5 at the surface and the mid-plane of the slab. From the plotted data the rate

of damage evolution and growth is most pronounced during the period at which T = Tf

characterized by rapid increase of the degree of cure. Hence, damage evolution depends almost

entirely on the reaction rate (chemical shrinkage) as hypothesized in GUZ', et al. (1988). Only an
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insignificant fraction of total damage can be attributed to thermal shrinkage associated with the

cooling cycle in the autoclave. The variation of the degree of cure across the slab thickness is

plotted in Fig.6. Variation of the viscoelastic (average or mean-field) normal stresses across the

slab thickness during cure are shown in Fig.7. Largest stresses occur at the mid-plane of the slab.

Variation of average stresses at the surface and mid-plane of the slab as a function of time are

plotted in Fig.8.

The dominant role of stress concentrations (attributable to excessive disorder) in damage

evolution is obvious from the fact that the link rupture rate within the interval (t > 4 hrs.), in

which the stress is largest, is insignificant. In fact, significant microcracking occurs in the

interval (2 > t > 4 hrs.) during which the magnitude of average stresses is below 20% of

maximum value. This result alone proves that the application of traditional mean field models in

this case leads to wrong conclusions. From the performed computations it is also obvious that

most of the damage occurs away from the slab surface making its detection difficult. The cure

induced damage levels of approximately 10% at the mid-plane and average damage levels of half

of that severity is consistent with the available data.

VIII. SUMMARY AND CONCLUSIONS

The proposed analytical model for the determination of the damage incurred in thermoset

resins during polymerization: (a) encompasses three scales (molecular, micro and macro), (b)

couples equations of chemical reaction rate, heat transfer and mechanical equilibrium and (c)

clearly identifies all material parameters. Moreover, the proposed model considers the

microstructural disorder and suggest a potent analytical method for the determination of the

stress concentrations characteristic of the disordered microstructures. A simple discussion of the

relative magnitudes of three characteristic lengths demonstrates that the conventional

micromechanical models, based on the effective continuum (or mean-field) theory, would not be

applicable in the considered case. Polymerization of resins is, in fact, a paradigm of this class of

problems since the microstructure must by definition pass through the percolation threshold
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characterized by large disorder and entropic deformation processes. It is well known that the

mean field estimates of the scaling laws for macro parameters and defect distribution are in

substantial error in the neighborhood of the percolation (sol to gel) transition.

The proposed modes is based on a proper equation for the rate of chemical reactions (7)

which, in contrast to existing models, includes the rate at which the links rupture (rate of damage

evolution). Moreover, this equation is cast into a form which: (a) demonstrates the dependence of

the rate of damage evolution on the stress concentrations in the disordered microstructure and (b)

allows application of the multifractal formalism. The parameters of the effective solid are

determined in the mean-field and the self-similar regimes. Constitutive relation for the solid (19)

was derived on the basis time-cure superposition model of stress relaxation in viscous materials

with changing connectivity proposed by ADOLF and MARTIN (1990). Effect of the micro-

structural disorder is introduced through the material parameters and the distribution of forces

within the diluted lattice.

One of the principal objectives of this work was to emphasize the fact that the damage during

curing must be attributed to the large stress concentrations which take place because of the

strongly disordered microstructural geometry and large spatial and temporal fluctuations of

temperature. This fact alone separates this model from those available in the literature. Using this

approach it was shown that the damage evolution is a random process which depends not only on

the stresses but also on the temperature fluctuations. Moreover, damage accumulation and

patterns depend not only on the average stress but even more so on the extreme stresses (stress

concentrations in a disordered lattice). In fact, computations (Figs. 5 and 8) indicate that the

mean field (effective properties) models will always lead to erroneous conclusions.

Microstructural disorder and attendant stress concentrations are, therefore, dominant aspects of

system near the phase transition. Consequently, the conventional fracture mechanics criteria,

derived for enthalpic deformation processes, should be replaced by the non-deterministic criteria

of the kinetic theory which fully recognizes the effect of the disorder. The application of the non-

deterministic models of the kinetic rupture theory are further justified by the fact that they are



30

applied at the scale of molecular chains at which the bond rupture can be interpreted as the

chemical reaction of the bond dissociation. Finally, the proposed model provides a rational

estimate of the size effect through the parameter 2A in the expression (60).

At this stage of the development the proposed model was for numerical efficiency based on

several assumptions which can be readily eliminated if so desired. The transition to three

dimensional lattices is one of assumptions which will require non-trivial further considerations.

Further validation and verification of the model and a more precise identification of some of the

parameters will require adequate experimental studies. In summary, the proposed theory

represent a radical change of some of the basic concepts of micromechanical modeling by

acknowledging the essential role of the disorder in damage evolution. As such the proposed

model is not merely an incremental improvement of the existing continuum and

micromechanical models based on averaging (or homogenization).
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FIGURE CAPTIONS:

Fig. 1: Phases of the polymerization process in resins.

Fig. 2: Distribution of the free energy in the links of a 32x32 triangular central-force lattice

near the percolation threshold (p=0.67) obtained by numerical simulations: (a)

four different realizations and (b) distribution averaged over 100 realizations.

Fig. 3: Multifractal spectrum f(a) vs a at the percolation threshold for the case of the

constant energy density ensemble.

Fig. 4: Evolution of the multifractal spectrum F(f.) vs. P8 for a growing connectivity p.

Fig. 5: Evolution of the normalized temperature (TITf), degree of cure (a), average

connectivity density p and density of fractured links pR with time at: (a) external

slab surface and (b) slab midplane.

Fig. 6: Variation of the degree of cure (a) with time across the slab thickness.

Fig. 7: Variation of the average normal stresses , with time across the slab thickness.

Fig. 8: Variation of the average normal stresses ( with time at the surface and mid-

plane of the slab.
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Abstract-The elastoplastic constitutive analysis which utilizes the model of multiplicative
decomposition of the deformation gradient into its elastic and plastic parts has been mainly
developed and applied to elastically isotropic materials, which remain isotropic during the process
of plastic deformation. This paper extends the application of the model to materials that change
their elastic properties during the deformation process as a result of the material degradation and
the corresponding damage. The exact kinematic and kinetic analysis of the finite deformations leads
to an additive decomposition of the total strain rate into its elastic, damage and plastic constituents.
The general structure of the expression for the damage strain rate is derived, valid for utilized
damage tensors of any order. The analysis of elastoplastic deformation of elastically anisotropic
materials without damage is also presented, with the application to transversely isotropic materials.
The relationships between the elastic and plastic strain rates and the components of the multiplicative
decomposition and their rates are also given.

1. INTRODUCTION

Let R,0 be the initial, undeformed configuration of a considered material sample, and
,, its deformed configuration obtained by a specified loading program front the initial to

current time t. Assume that a loading is beyond the elastic limit, so that inelastic deformation
processes take place, pertinent to internal structure and composition of the considered
material. For example, if the material is a ductile metal, inelasticity is caused by the
dislocation motion and related micromechanisms occurring within a metal polycrystalline
structure. For a brittle material, such as rock or concrete, inelastic deformation is a
consequence of the evolution of internal crack structure, i.e. the initiation and propagation
of microfractures within the material sample. Whatever the cause of inelasticity is, let F be
the deformation gradient that maps the infinitesimal material element dX from its initial
configuration to its current configuration dx, i.e. dx = FdX. Both the initial X and the
current x locations of the material particle are referred to the same, fixed set of the
rectangular coordinate axes. Introduce next the intermediate reference configuration ,9, by
elastic distressing the current configuration 9, to zero stress. Therefore, defined con-
figuration differs from the initial configuration by residual (plastic) deformation, and from
the current configuration by reversible (elastic) deformation. If dp is the material element
in Y,, corresponding to its configuration dx in 9,. then dx = F~dp, where F, denotes the
deformation gradient associated with elastic loading from Y, to 9,. Introducing also the
deformation gradient of the transformation 9' -" •,, by dp = FpdX, the multiplicative
decomposition of deformation gradient follows (Lee, 1969):

F = FFp. (1)

F, is customarily called elastic, and F, plastic part of the total deformation gradient F. For
inhomogeneous deformations, only F is the true deformation gradient, whose components
are the partial derivatives e'x/OX. In contrast, the mappings Y, --, 2, and 2o -* , are not,
in general, continuous one-to-one mappings, so that F, and Fp are not defined as the
gradients of the respective mappings (which may not exist), but as the point functions (local
deformation gradients). In the case when elastic distressing to zero stress (,, --*+ ,) is not
physically achievable due to the onset of reverse inelastic deformation before the zero stress
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is reached (which often occurs at advanced stages of deformation due to anisotropic
hardening and strong Bauschinger effects in ductile metals, or due to the incomplete
frictional back-sliding of the crack faces in brittle rocks), the intermediate configuration
can be conceptually introduced by virtual distressing to zero stress, locking all inelastic
structural changes that would occur during the actual distressing.

Deformation gradients F, and F, are not uniquely defined, because arbitrary local
material element rotations superposed to unstressed state give alternate intermediate con-
figurations. However, if the material is elastically isotropic and remains such during the
inelastic deformation, preserving its elastic properties, the elastic strain energy 0, per unit
unstressed volume is an isotropic function of the right Cauchy-Green elastic deformation
tensor C, = FeFe, i.e. 0e(QCeQT) = 0,(Ce). Here, Q is an orthogonal tensor corresponding
to arbitrary rigid-body rotation superposed to the unstressed state (superscript T denotes
the transpose). The elastic stress response from 9, -- 9, is, therefore, not influenced by the
nonuniqueness of intermediate configuration and is given by the well-known isotropic finite
elasticity law (Truesdell and Noll, 1965)

2 B , 0 )(2 )
tr= IJ-• B . (2)

In eqn (2), the strain energy (per unit unstressed volume) ,', is an isotropic function of the
left Cauchy-Green elastic deformation tensor B, = F, FT, I denotes the determinant and a
is the Cauchy stress tensor. This structure of elasticity law was used in a series of papers on
the elastoplastic constitutive equations by Lee and his coworkers (Lee, 1969; Lubarda and
Lee, 1981 ; Agah-Tehrani et al., 1987), by Lubarda (1991a, 1994) and Lubarda and Shih
(1994).

Few attempts were made to extend the analysis based on the multiplicative decompo-
sition to materials that are elastically anisotropic in its initial (underformed) configuration,
or to materials that develop elastic anisotropy during a course of inelastic deformation
(Dafalias, 1985; Lubarda, 1991b). In fact, since in most elaborations it was assumed
that elastic properties are not influenced by the previous inelastic processes, which is an
unacceptable assumption in many cases of engineering importance, the usefulness of the
decomposition was seriously questioned (Nemat-Nasser, 1982). The difficulty was partly
related to the nonuniqueness of the unstressed configuration, its consequences on the
anisotropic elastic response, and anticipated mathematical difficulties that may arise in
proper handling of the analysis. This paper is, consequently, devoted to the generalization
of the existing constitutive analysis, based on the multiplicative decomposition, to materials
that change their elastic properties during the inelastic deformation process, and exhibit
the damage-elastoplastic response. The general formulation is presented, restricted to
isothermal and time-independent material behavior.

2. DESCRIPTION OF ANISOTROPIC ELASTIC RESPONSE

Consider an intermediate configuration _q, obtained by distressing the current con-
figuration J, to zero stress. Assume that the material in configuration 9, is elastically
anisotropic. either because it was initially anisotropic, or because it has developed elastic
anisotropy during the previous inelastic deformation (for example, due to the grain rotations
in a polycrystalline metal sample and the consequent crystallographic texture, or due to
anisotropic crack progression in the brittle rock samples). Therefore, let 9 denote a set of
the symmetric tensor variables of various orders (scalars, second-order, fourth-order
tensors, etc.). attached to the current configuration R,, which appropriately account for the
degradation of elastic material properties and their directional changes, accumulated during
the previous inelastic deformation. The variables 9 will be referred to as the damage
variables. For example, in modeling inelastic behavior with infinitesimal elastic component
of strain, the current (degraded) fourth-order elastic stiffness tensor can be selected as
an appropriate damage tensor (Dougill, 1983). Ortiz (1985) has used the current elastic
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compliance tensor as the damage tensor in his study of inelastic behavior of concrete [see
also Lubarda and Krajcinovic (1993, 1994a)].

Even if there is no degradation of elastic material properties, the tensor variables !2
can be introduced to properly and conveniently describe the state of initial elastic anisotropy
of the material [structural tensors (Boehler, 1987)]. For example, in the case of transverse
isotropy with the axis of isotropy in the current configuration 2, coincident with the
direction n, the structural tensor is the second-order tensor 9 = n ® n. For orthotropic
material with the principal directions of orthotropy coincident with the directions n1, n2, n.,
the structural tensors are nj ® ni, n, ® n, and n3 ®n3 D ---= I- i ® n,--n22 ® n (I denotes the
second-order unit tensor and 0 the outside tensor product). The structural tensors cor-
responding to a general elastic anisotropy can be similarly formed and are given in Boehler
(1987).

The introduced damage variables can only change during continuing inelastic defor-

mation but remain unaltered during elastic unloading or reverse elastic loading, except for
the elastic embedding which convects them together with the material. Therefore, the
damage variables fl in the current configuration q', become the variables 6 in the inter-
mediate configuration, induced from 9 by elastic deformation Fe. For example, for the
second-order damage tensor, the induced tensor can be defined by a transformation of the
weighted contravariant or covariant type, i.e.

F F F"FJ 9F -T or != I eF FT9 F,, (3)

where m is the weight and (- 1) denotes the inverse. For the fourth-order damage tensor,
the corresponding induced tensor is

j IFe-D F - FT&F- o r=IV FT o F Tr!2 F, ®D e. (4)

For example, the second tensor in eqn (4) has the components

-1kI = I Fe.. (,'g)T(,)T • '.• . (5)

To describe the elastic response of anisotropic material at the current state of deformation
and material damage, the strain energy Vi per unit initial volume is assumed to be given by

' = V,(CJ, 7). (6)

Note that 0 = I Fp1 0,, where 0, is the elastic strain energy per unit unstressed volume in
the intermediate configuration. Since the unit of unstressed volume contains a varying
amount of mass during the deformation process whenever plastic deformation is compress-
ible, so that I FP1 0 1, the strain energy 0 per unit initial volume is introduced in eqn (6), as
it always refers to a fixed amount of mass.

Since the material response is independent of the superposed rotation to intermediate-
unstressed configuration. eqn (6) has to be an isotropic scalar function of the set of all its
arguments., i.e. Q and ý. For example. if the set fl consists of the second-order tensors 92
and the fourth-order tensors 94, the isotropy of 0 requires that for every orthogonal
transformation Q,

ifr(QC•Q T. QC,2~QT' Q G Q 9,_f QT D Q T) = t0(C". 2, ) (7)

Note that under the superposed rotation Q of the intermediate configuration, 9 does not
change, as it is defined with respect to the current configuration. Since F, changes to FeQT,
from eqn (3) it follows that 2, changes to Q2 2 QT. An analogous change rule applies to
the fourth-order damage tensor !4, as utilized in eqn (7).

The theory of isotropic scalar and tensor functions of several tensor arguments has
been extensively studied in the literature. A comprehensive treatment of various important
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issues has been presented by Spencer (1971, 1987) and Boehler (1977, 1987). There the
integrity basis for the considered functions are derived mainly for the vector and second-
order tensor arguments. Betten (1982, 1987, 1992) has also considered the functions that
depend on the second- and fourth-order tensors and construction of their individual and
joint invariants. For example, if _ in eqn (6) is a single second-order symmetric tensor, ,
can be represented as a polynomial of its irreducible integrity basis consisting of the
following invariants:

(Ce :1), (Ce: Ce), (C2: C'), ( I :I), (:

(c (ce: _ ) (8)

In eqn (8), (:) stands for the inner (trace) product of the second-order tensors. The integrity
basis can be written for any finite set of second-order tensors. Spencer (1971) provides a
list of invariants and the integrity bases for the polynomial scalar functions dependent on
one to six second-order tensor arguments. For general (not necessarily polynomial) func-
tions, the integrity bases are replaced by the function bases, which, in general, contain fewer
terms than the corresponding integrity bases. For example, the function bases of the general
scalar function dependent on an arbitrary number of second-order tensors are composed
of the traces of the products of all unordered combinations of only one, two and three
tensorial arguments (Boehler, 1977).

The construction of the integrity bases for the second- and fourth-order symmetric
tensors is a more difficult task. Some of the individual and joint invariants are listed below
[for the more complete list, refer to Betten (1987, 1992)]:

T: (, 0 CA) I CD), (C,:) :0(': CO). (9)

In eqn (9), II is the fourth-order unit tensor, while :: designates the trace, so that for the two
fourth-order tensors A and B, A :: B = AA.1Bjkt. The trace of the fourth-order tensor A and
the second-order tensor C is the second-order tensor A: C, with the components AukCkA.

In general, the stress response from the intermediate to current configuration is given
by

2 00
IF =• , • , (10)

which is independent of the rigid-body rotation superposed to the intermediate configur-
ation. This clearly follows since a does not change under the superposed rotation Q of the
intermediate configuration, while F, changes to FCQT, and C, to QCQT. More detailed
discussion of the objectivity issues in the formulation of elastoplasticity theory by using the
multiplicative decomposition of the deformation gradient is presented by Lubarda (199 la).

Expressing the strain energy 0, per unit unstressed volume in terms of the strain energy
0 per unit initial volume, eqn (10) can be rewritten as

= 2F€ F , (11)

where T = I Ft a is the Kirchhoff stress and ' = I FP1 0, is the strain energy per unit initial
volume. In the rate-type constitutive analysis considered in this paper, it will be useful to
start the analysis with the finite elasticity law [eqn (11)], even when intended application is
to material behavior with infinitesimal elastic components of strain.
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3. RATE-TYPE ANALYSIS

To derive the rate-type constitutive equations of the damage-elastoplastic material
behavior, apply first the material time derivative (designated by the superimposed dot) to
both sides of eqn (11). By an appropriate and straightforward rearrangement of the terms,
it follows that

(iPeFC-)T+?r(Fe- )+ Neý (a,0 c et FeT+ 2F, ~ )~ (12)

In view of eqn (11), which gives the stress T as a function of F, and 9, the last term on the
right-hand side of eqn (12) can be written in a compact form as

2F/ F LT : (13)

In eqn (13), 0t/a9 designates the partial derivative of the stress expression (11) with respect
to 6, at constant Fe. Further, since

te = 2FT(,Fg- '),F,, (14)

where the subscript s designates the symmetric part, the third term on the right-hand side
of eqn (12) can be written as

2F, c:Ce) FT = A,:(,Fe-'),. (15)

Here, A. is the fourth-order tensor with the rectangular components

a02?
A'k 4 Pj.,Tj,, -C ~ Fk',11,. (16)

Substitution of eqns (13) and (15) into eqn (12) therefore gives

t = (PeFe-) + (PFF.-')T +A,: (,FeF-) + E_-:9;" . (17)

To proceed further with the rate-type constitutive analysis, consider the velocity gradient
in the current configuration at time t, defined by L = IF-'. Introducing the multiplicative
decomposition of the deformation gradient [eqn (1)], the velocity gradient can be expressed
as

L = 1•Fe ' + F,(FPF- t)F;-. (18)

The strain rate D and the spin W are given by the symmetric and antisymmetric parts of
L:

D = (1,F, ')+ [Fe(PpF- ')F- '] (19)

W = (Fe- ')a + [F(PFP- ')Fi- '],. (20)

Writing F;-' as the sum of its symmetric and antisymmetric parts, and using eqn (20) to

express the antisymmetric part, one has
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PýF- = (PýF-').+W-. (21)

For convenience, the tensor to in eqn (21) denotes the spin

ci = [Fe(pFF-p')F;-]a. (22)

Substitution of eqn (21) into eqn (17) consequently gives

o • (e-F•'),+ ^ +to- to, (23)T =Y,": (PFoeo0-+9

where

0 = "t- Wz+T W(24)

represents the Jaumann derivative of the Kirchhoff stress r. The material derivative of the
Kirchhoff stress appearing on the right-hand side of eqn (24) is t = I F(6'+a trD), where
tr denotes the trace.

The fourth-order tensor of the instantaneous elastic moduli Y*e, appearing in eqn (23),
has the rectangular components given by

Ye kI = '(bik ,j,+ bjj + T,6j, + ,bj,) + 4F',,, j,, . 2 (25)

where bij denotes the Kronecker delta. In view of the introduced isotropy of the strain
energy function 4,, it is easily shown that the components [eqn (25)] are independent of the
superposed rotation of the intermediate configuration. In other words, any one from
infinitely many by rotation differing deformation gradients F, when substituted into eqn
(25), gives the same values of the instantaneous elastic moduli. In metals the elastic moduli
are usually far greater than the applied stresses and the two fourth-order tensors, whose
components are given by eqns (16) and (25), are approximately equal to each other.

4. THE RATES OF DAMAGE TENSORS

Consider first ! to be the second-order damage tensor. The material time derivative
of the induced tensor of the contravariant type, I= I F eI"'F FT, is

S= I Fj"' Fe' 9 FeT, (26)

where

= - (¢Fe- ') -. (PF- I)T + 171g tr (PFF I) (27)

is the corresponding (Oldroyd/Truesdell type) convected derivative, relative to the velocity
gradient PFF'. If the induced tensor of the covariant type is used, i.e. F,= I '"FT..Fe,•
one has

-T

S= IFj -"'F9 FeT, (28)

where
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9= + f(FFe- 1) + (FFF-')Vg - mi tr (PFe-') (29)

is the corresponding (Cotter-Rivlin/Truesdell type) convected derivative, associated with
the covariant transformation. Substitution of either eqn (26) or (28) into the second term
on the right-hand side of expression (23) therefore gives

9 (30)

It should be observed that the introduced convected derivatives [eqns (27) and (29)] are not
uniquely defined because the unstressed intermediate configuration is specified only to

.within an arbitrary rigid-body rotation, so that the velocity gradient oF;-F, used in eqns
(27) and (29), is not uniquely defined either. However, in some applications it may be
convenient to specify the intermediate configuration uniquely, on the basis of some
additional physical structure, explicitly introduced in the considered material model and
pertinent to its internal structure and the deformation modes. For example, in the crystal
plasticity (Asaro, 1983), the rotation of the intermediate configuration is uniquely specified
by requiring that the basic crystalline (lattice) structure always has the same orientation
relative to the fixed reference frame [isoclinic intermediate configuration, in the terminology
of Mandel (1971, 1973)]. In this case, the velocity gradient PeF-.' is uniquely defined and
represents the sum of the lattice strain rate and the lattice spin. Physically, it is the
discontinuous slip of the material over the active slip planes that causes the lattice orien-
tation to be convected by the lattice and not by the material itself.

On the other hand, in some applications it may be more appropriate to introduce the
convected derivative as the derivative observed in the reference frame that deforms with
the material, i.e. relative to the material velocity gradient L = FF- '. For example, in brittle
materials like brittle rocks, the change of elastic properties occurs due to propagation of
the crack-like defects through the material, which convects them with itself during the
deformation process. Therefore, by using eqn (18) to eliminate (IFe-), eqn (26) can be
rewritten as

= I FI-'F- _'FJ-T+ (PFp ')el + (FPFI ) TV_ -n7 tr ('FP'), (31)

where

L= - 9LT+ mq trL. (32)

Similarly, eqn (28) can be rearranged as

6 = I F e .. F ,F(- F(pFP') (FPF•- 1)T9 + tr(PF•- ¼) (33)

where

= + L + L + L - 171.g" trL. (34)

Substitution of either eqn (31) or (33) into the second term on the right-hand side of
expression (23) now gives

W e ( i used, tf hr (35)

When eqn (3 1) is used, the fourth-order tensor d# is defined by



2958 V. A. Lubarda

'a (P•F- 1) = -" [('pF- + _') (1± F- I)TmZ tr(PFP- )]. (36a)

If eqn (33) is used, eqn (36a) is replaced by

.4: (PFP- 1) =-9 : [•(FPF- ')+(F•- I)T+ _-m2 tr(PFP- 7)]. (36b)

It should be pointed out that, although in this section the damage tensors were assumed to
be the second-order tensors, the structure of expressions (30)-(35) remain the same for any
introduccd higher-order symmetric damage tensors. This is illustrated for the fourth-order
tensors in the Appendix of this paper.

5. IDENTIFICATION OF ELASTIC AND DAMAGE STRAIN RATES

Substituting expression (30) into eqn (23) it follows

S= Y,: (eF-)s+e -'+o-wr. (37)

If eqn (35) rather than eqn (30) is used, one has

0 = :(FF-)% + a : .+ :Fp) + -•. (38)

Concentrating attention first to the case when eqn (37) applies, it is next shown that the
strain rate (,Fe- '), consists of three parts: elastic strain rate D%, damage strain rate Dd and
an additional part denoted by A, such that

(PFeF-)s = De+Dd+A. (39)

Indeed, substitution of eqn (39) into eqn (37) gives

T e = ":De+$e:Dd +- : 9 + Ye: A +TW-COT. (40)

Since the instantaneous elastic moduli tensor Y,. and its inverse, the instantaneous elastic
compliance tensor Y;' , possess required symmetry and reciprocity properties

Wei= ($ 'l )ik W (Y'e 1)jikI = (Y9e-) (41)

it follows that Y9': T is derivable from the elastic rate potential 40, = 1 T-' : (T 0 T) as its
gradient a4,e/c•. Therefore,

D, = Y` : T (42)

gives the reversible strain increment, that is recovered in a hardening material upon unload-
ing of the Jaumann stress increment associated with TO. Further, it is natural to define the
damage strain rate Dd as the strain rate associated with progressive degradation of the
material elastic properties, as represented by the change of damage variables .@. Hence, the

damage strain rate Dd has to be directly related to the rate of change tensor !. Consequently,
in view of the previously established relationship [eqn (42)] between D, and T, it necessarily
follows that eqn (40) splits into three equations:
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'e: D, = T (43)

=Y 0 (44)

.Y, : A +rto - r = 0. (45)

Inversion of eqn (43) gives the elastic strain rate expression (42). Solving eqn (44) for Dd

provides the expression for the damage strain rate

Dd = !-.2- " -: (46)

With the evolution equation for the damage rate . additionally constructed, eqn (46)
explicitly gives the damage strain rate Dd. Finally, condition (45) defines the remaining part
of the strain rate (FC- ')s, appearing in eqn (39), i.e.

A = _ `- : (T to - (or). (47)

If eqn (38) is used in place of eqn (37), it is easily shown that the corresponding damage
strain rate is defined by

Dd= Y-,:•' I - , (48)

while expression (47) is replaced by

A = -.- :[.: (PF) + to± -- oT]. (49)

It is clear that the right-hand side of eqn (48) is independent of the superposed rotation to
the intermediate configuration, hence for the prescribed ? and the known current state of
the material, eqn (48) uniquely specifies the damage strain rate Dd. Since De is also uniquely
specified, the nonuniqueness of the strain rate (FF 1)s, associated with a possible super-
posed rigid-body rotation of the intermediate unstressed configuration, is all contained in
the nonuniqueness of the A part of this strain rate, given by eqn (49). However, in the
subsequent analysis, the A part of the strain rate is of no direct interest and its nonuniqueness
does not present any problem.

6. PARTITION OF THE STRAIN RATE INTO ITS ELASTIC, DAMAGE AND PLASTIC PARTS

Substituting expression (39) for the strain rate (FF-l'), into expression (18) for the
total strain rate, it now follows that

D = D, + Dd + A + [F(FPF- )F- ]. (50)

Consequently, by defining the plastic strain rate DP as

Dp = [F(1P'FP- 1 )Fe ]•+A, (51)

expression (50) gives the additive decomposition of the total strain rate into its elastic,
damage and plastic constituents, i.e.
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D = D,+Dd+Dp. (52)

For example, if the material behavior is such that the Ilyushin postulate can be adopted
(Ilyushin, 1961), i.e. the nett work done during arbitrary closed strain cycle is positive,
provided that inelastic deformation occurred during the cycle, it follows that
Dp+Dd = D-D. part of the total strain rate is normal to the yield surface in stress space
[see eqn (11) of Ilyushin (1961) and the discussion following eqn (16) of Hill (1968)]. If
elastic properties are assumed to be uninfluenced by inelastic deformation, the damage
strain rate is zero and DP = D-DD part of the strain rate is normal to the yield surface.

7. ELASTOPLASTICITY WITHOUT DAMAGE

As a special case of the general formulation presented in the previous sections, consider
the elastoplastic deformation of an elastically anisotropic material without a damage. For
the sake of simplicity, restrict attention to transversely isotropic material. A similar analysis
can be performed in the case of elastic orthotropy or more general anisotropy. Let no be
the unit vector parallel to the axis of isotropy in the initial undeformed configuration 90.
In the current elastoplastically deformed configuration 9, the material is assumed to
remain transversely isotropic, with the axis of isotropy parallel to the unit direction n. The
corresponding structural tensor is (Boehler, 1987)

!2 = n ®n. (53)

Due to discontinuous slip and other micromechanisms of plastic deformation, the direction
of the isotropy axis is not, in general, convected by the total deformation gradient, i.e.
n = IF -•'Fn 0. It will be convenient in this section to specify the intermediate unstressed
configuration Y, to be isoclinic, so that the direction of the isotropy axis in 9, is parallel to
its direction no in the initial undeformed configuration go. Note that the so defined isoclinic
configuration is unique to within an arbitrary rigid-body rotation about the axis of isotropy
no. Since the elastic material response from -, to 2, is not influenced by the rotation about
the isotropy axis, this rotation is of no further importance. If Fe is the deformation gradient
from any of the introduced isoclinic configurations to the current configuration, it follows
that

n = IFeI-' Feno. (54)

Equation (54) holds because the axis of isotropy can be considered to be embedded in the
material during the elastic deformation F, The induced structural tensor in the intermediate
configuration is, therefore, obtained by the contravariant-type transformation

S=I F, 2 F,-' ,Fe-m = no 0® no. (55)

Since _ is a constant tensor, from eqn (26) it follows that 9 = 0, and eqn (46) gives that
the damage strain rate is also equal to zero, Dd = 0. This was naturally expected to be the
case, because it is assumed that the material remains transversely isotropic, with the
unchanged elastic properties.

Consequently, expression (39) reduces to

= Dý+A. (56)

Equation (56), together with expression (47) for the A part of the strain rate, provides the
explicit relationship between the elastic strain rate D, and the constituents Fe and Fp, and
their rates, of the multiplicative decomposition of the deformation gradient F = FFp,
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D, = (PF-F')s + Y -!(rwo--co). (57)'"

The remaining part of the total strain rate is the plastic part

D, = [F,(PpFp- ')Fc '],- Ye :(rw - Wo). (58)

For example, if the material behavior is such that the Ilyushin postulate applies, the plastic
strain rate D, given by eqn (58) is governed by plastic potential and is normal to the
corresponding yield surface in stress space. This follows by applying the llyushin postulate
to certain finite or infinitesimal strain cycles, as shown by Hill (1968) and Hill and Rice
(1973). The interpretation of the expressions analogous to eqns (57) and (58) that arise in
the crystal plasticity studies has been given by Hill and Rice (1972), Hill and Havner (1982)
and Asaro (1983).

The instantaneous elastic moduli tensor Y, defined by eqn (25), depends on the
elastic deformation gradient Fe, which is here defined relatively to isoclinic intermediate
configuration. To determine Fe, we proceed as follows. By the polar decomposition theorem,
the elastic deformation gradient Fe can be expressed as Fe = VeRe, where V, is the elastic
stretch and Re is the elastic rotation tensor. Since the elastic strain energy 0, is an isotropic
function of both Ce and 4ý, it follows that

Oe(Ce, O) = Ie(Be,-@). (59)

In eqn (59), Be = V2 is the left Cauchy-Green elastic deformation tensor, while the rotation
induced structural tensor • is defined by

M Re•R =i®ii, (60)

where

fi = Reno. (61)

The stress response (11) can consequently be written as

SOO(B ,- )
2V, V'. (62)OB,

If the current state and the rotation Re are known, eqn (62) gives a one-to-one relationship
between the stress tensor T and the elastic stretch tensor V, = B' 2. To obtain the elastic
rotation Re, however, additional consideration is needed. For example, if on a certain
physical basis an evolution equation for the spin 9 = 1,R,-' is constructed, the rotation
Re is obtained by the integration of

l11 = 92R,. (63)

Note that from eqn (61) the rate of change of the unit vector fi is n = Mfi. When the rotation
R, is determined, the elastic deformation tensor is calculated from F, = VRe, where Ve is
calculated from eqn (62). The direction of the axis of isotrophy n in the current configuration
is then found from eqn (54).

8. CONCLUDING REMARKS

We have formulated in this paper the constitutive framework for the analysis of finite
elastoplastic deformation in the presence of progressive degradation of the elastic material
properties and corresponding damage. This has been accomplished by extending the model
of the multiplicative decomposition of deformation gradient, which has previously been
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applied almost exclusively to the analysis ofelastoplastic deformation of elastically isotropic
materials, which remain isotropic during the plastic deformation processes. The exact
kinematic and kinetic analysis of the finite deformation leads to the partition of the total
strain rate into its elastic, damage and plastic parts. A general structure of the expression
for the damage strain rate is derived, valid for introduced symmetric damage tensors of
any order. The analysis of elastoplastic deformation of elastically anisotropic materials
without damage is also presented, with application to transversely isotropic materials.

The presented work requires several extensions in order to complete the constitutive
description of materials that undergo damage-elastoplastic deformation. The most immedi-
ate one is a development of the constitutive structure for the evolution equations for the
appropriately specified damage variables. The coupling between plasticity and damage,
elaboration on the structure of the yield and damage surfaces. existence of inelastic poten-
tials and normality properties, are some of the associated questions also requiring further
research. The valuable insight is already available from some of the previous related work,
both in metal plasticity and rock and concrete inelasticity, such as Rice (1971), Rudnicki
and Rice (1975), Nemat-Nasser (1983), Ortiz (1985), Ashby and Sammis (1990), Voyiadjis
and Kattan (1992), Lubarda and Krajcinovic (1994b), etc.
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APPENDIX

The expressions for the rates of damage tensors given in Section 4, and for the damage strain rate given in
Section 5, were derived by considering the damage tensors 9 to be the second-order symmetric tensors. We here
show that the same derivation applies when the fourth- or higher-order damage tensors are introduced to
adequately describe material degradation during a deformation process. Indeed, the fourth-order induced damage
tensor & in the intermediate configuration z,, corresponding to the fourth-order damage tensor f in the current
configuration ,R,, has the covariant-type components

jI F- )
T 

(p/)
T  

-,it ,kF'F . (A])

The material time derivative of eqn (Al) is

k= I Fl -'(F )
T (F) .F)T :l.F, (A2)

where -. represents a convected derivative of ! relative to the velocity gradient $',FJ-'. Substituting eqn (A2) into
the second term on the right-hand side of the expression (23) therefore gives

ý9: = •-:, (A3)

which is the same structure as that of the previously derived expression (30). valid for the second-order damage
tensors.

To derive an expression analogous to eqn (35). eliminate PFF' from eqn (18) in terms of the total velocity
gradient L = F K, to obtain

,ij, = I I-"(.FT,,)T(F/,~)T /,:,, • + /,,,, tr (FrF7  ')

- •,,( ~rF• ',,- P.,J ~Fp ), (PF - I)T, fl,, -(-,F•- ,)T,•, (A4)

In eqn (A4). 6 denotes a convected derivative of the fourth-order tensor 9. relative to the velocity gradient L.
i.e. the derivative observed in the reference frame that deforms with the material in the current configuration -4,.
The components of this tensor are

9 -ý., . , •T (A5)

Substitution of eqn (A4) into the second term on the right-hand side of the expression (23) then gives

SAS 31:21-F
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c• : •3z .• .. •+ ./: (lr~F•- ),(A6)

with the fourth-order tensor .4 defined by an expression similar to eqn (36b), corresponding to the second-

order damage tensors. The expression (A6) coincides with the previously derived expression (35). An analogous

derivation with the contravariant-type transformation leads to the same conclusion. Consequently, the derivation

presented in Section 5 and the structure of the damage strain rate expressions (46) and (48) remain valid if the

damage tensors are of the fourth order. The same is true for higher-order tensors, as well.
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1. INTRODUCTION

A polycrystalline solid is said to deform in a ductile (or plastic) mode if "the
material flows through the crystal via dislocation motion, ..., whereas the lattice itself,
with the material embedded on it, undergoes elastic deformation and rotation" [1]. It is
important to observe that the lattice, its connectivity (density of atomic bonds) and,
therefore, the effective elastic parameters do not change during a plastic deformation.
Consequently, the residual strain is the only history recording parameter. The inelastic
deformation attributed to the damage may be, in a complementary manner, manifested
on the macro scale by the change of elastic (effective) parameters or the strain caused
by the change of the lattice connectivity. Local discontinuities of the displacement field
caused by the rupture of atomic bonds (damage) will, in a perfectly brittle solid,
disappear upon unloading to the state of zero stress. Consequently, the damage will not
cause residual strains. Thus, the change of the elastic moduli (density of atomic bonds)
can be used to represent the thermodynamic flux and will provide a rational measure of
the rate of damage accumulation.

The described definition of damage and its effect on the macro response implies
averaging in a mean field sense. Underlying assumption of statistical homogeneity is
seldom if ever investigated let alone questioned. The objective of this short study is a
brief discussion of some limitations of current damage models and associated pitfalls.

2. ESSENTIAL STRUCTURE OF DAMAGE MODELS

The microstructure of a typical engineering material is in a majority of cases
disordered. The range of the disorder may vary and the type may be of chemical,
geometrical or topological origin. As the damage in form of microcracks accumulates
the disorder level progressively increases. Currently available analytical models are
almost exclusively of continuum, deterministic and local type. Implicit to this models
is: (a) that the statistics of the microstructure is such that the process is on the macro
scale reproducible without a large scatter and (b) that the selected state and internal
variables and effective parameters are physically identifiable and measurable in tests.

Assuming that the concentration of microcracks and active slip planes is dilute the
expression for the macro strain admits, in the infinitesimal strain approximation, the
additive form

- = S(H): ac+ (1)

where S is the effective elastic compliance tensor and eP the plastic strain. Symbol H is
used to denote the set of parameters needed to define the recorded history in
thermodynamic sense. Assuming continuity of all tensors in (1) the rate of strain is

= S(H):& + S(H): a + 0Y (2)

4.



Three terms on the right hand side of (2) represent the rate of the elastic strain (in a
damaged material as defined by the already changed compliance), the rate of strain
attributable to the damage increment and the plastic strain rate, respectively.

The effective (overall) compliance of a solid weakened by an ensemble of
distributed microcracks and other micro defects can be written in the form of a sum [2]

S(H) = So +S*(H) (3)

of the compliance of the pristine (undamaged) solid and the compliance associated with
the local fluctuations and discontinuities of the displacement fields caused by active
micro defects (representing two terms on the right hand side of (3), respectively). The
expression for the compliance attributed to the accumulated damage (in form of penny
shaped planar microcracks of radius a) can be determined using micromechanical
models in form of an integral

a+
S* (H)=-1-zf p(a)a3 fS(a)(n,m;S)p(n,m)dadf2 (4)
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where S(a)(n,m;S) is the compliance for a system of microcracks bedded in parallel
planes (used here as a Green's function) with normal n and p(n,m) the distribution of
the microcrack density with respect to the orientation of their bedding planes. Also, m
defines the normal of an arbitrary plane, £2 the solid angle, p(a) the distribution of
microcrack radius sizes and (a-, a+) the range within which they change [3].

Analytical quadrature of the integral in (4) is possible only for circular or elliptical
planar cracks and in a dilute limit of microcrack density, i.e. when the microcrack
interaction is totally neglected. In this case components of the tensor S(a) depend on the
known compliance of the pristine solid S,. In all other cases each component of S(a
depends on the unknown components of the overall (effective) compliance tensor
S (H) rendering the relation (4) both explicit and implicit. In this case the expression
(4) can be, at best, reduced to a system of algebraic equations which defies analytical
solutions. Hence, the analytical solution for the overall compliance from (4) is not
possible even in the case of the weak interaction, i.e. for the case when the mean field
theory and the self consistent or differential models are applicable [4].

In the case when the quadrature (4) is possible the result can be expressed as [5]

6

S* (H) = (Na')IciIi (5)
i=1

The average value of the product between the number N of microcracks per unit volume
and the cube of the crack radius a (in angular bracket), known as the Budiansky,
O'Connell parameter [4, 6], is universally accepted as a micromechanically justified
measure of damage. Six tensors Ii represent the irreducible tensor basis of the class of
all fourth order tensors which are invariant with respect to the permutations of first and
second pair of indices [5]. Finally, six scalars cl can be determined from the effective
(overall) parameters of the solid [5].

Expressions (1) to (5) represent the basis for the micromechanically based
constitutive model for materials which deform in a quasi-brittle or brittle-ductile mode.
Distribution of the microcrack density p(n,m) with respect to the orientation can
sometimes be measured using methods of quantitative stereology and is typically



represented using the rosette histograms. Furthermore, these rosette histograms can be
approximated by even order tensors [7]. It is interesting that for the determination of the
effective compliance (4) a fourth order tensor representation of p(n,m) provides an
exact (micromechanical) solution [8] in the mean field domain.

3. LIMITATIONS OF THE MEAN FIELD MODELS

Leaving aside for the moment the fact that the distribution of microcracks is seldom
known and measurable and that integral in (4) can be integrated analytically only when
the microcrack density is dilute, it is essential to examine the conditions under which
the mean field constitutive model is physically and geometrically acceptable. Two of
these conditions are quite apparent. Firstly, the density of microcracks must be rather
dilute since all models based on averaging neglect the direct interaction of the
microcracks. Secondly, the relation (5) states that the effective (overall) compliance is
invariant to the variations of the number of microcracks per unit volume and the cube of
the radius length for which the value of the Budiansky, O'Connell parameter does not
change. Finally, all variables and parameters in equations (1) to (5) are volume averages
of respective microstructural counterparts. This means that a volume over which the
homogenization is performed must exist and must be much smaller than the specimen
itself. The last condition may be re-phrased as a requirement that the range over which
the solid is statistically homogeneous must be small. Hence, the linear size of the
representative volume element must also be small.

The conditions as stated above and in the literature are, to say the least, vague. In
order to provide the quantitative measures and rigor to attributes such as dilute, micro,
small and short and render the mentioned conditions precise it becomes necessary to
introduce the characteristic lengths into considerations.

For example, an effective continuum or mean field model will be applicable, if and
only if the following three conditions are met [3]

P(Li > Ld) ---> 0 max(ý,Lc,max) << L.ve << L
(6)

dd e << ý

In (6) Lc, Ld, Li and Le are the crack size, distance between cracks, crack interaction
range and the linear size of the representative volume element (RVE), respectively.
Symbol ý denotes the correlation length over which the fluctuations of the stress fields
created by cracks are correlated. This length, often used in physics of disordered media,
is necessary for the proper definition of microcrack clusters and the shear (crack) band.
Three conditions (6) require: (a) that the cumulative probability of direct interaction of
adjacent microcracks is small, (b) that the largest microcrack or cluster of correlated
microcracks is much smaller than the representative volume element which can in turn
be comfortably fit into the specimen of size L and (c) that the largest difference of
tractions applied at the boundary of the RVE is much smaller than the average traction
itself. Third requirement, rarely mentioned and even less frequently considered, is a
natural consequence of the fact that the considered models are based on the assumption
that the spatial correlation have a negligible effect on the macro response. According to
this assumption, which significantly simplifies the model, the exact position of a micro
defect within RVE is inconsequential. This condition will place stringent limitations on
the size of the RVE in the case of inhomogeneous states of stress and should, in all
probability, disqualify the application of these models for the analyses of the process



zone enveloping an atomically sharp tip of a macro-crack. The resolution length £ of
this model is equal to the linear size L,,e of the RVE.

Situation is much simpler in the case of the cell model which replaces a random
distribution of defects by a periodic arrangement of equal density (or equal value of the
Budiansky, O'Connell parameter). Application of this model requires that

Lc <L Zcel, << L (7)

where the linear size of the cell Lceil is constant. The underlying presumptions are:(a)
that the resolution length can be infinitely small if the analytical solutions are available
or as small as desired if a numerical model is needed and (b) that the model provides a
valuable estimate of the effect of the defect interaction on the macro response and
macro failure since the defects belonging to adjacent cells may almost touch each other.

However, it is easy to demonstrate that the cell model comes short on these and
other expectations. Consider, as an example, a two-dimensional system of parallel slits
perpendicular to the direction of tensile tractions. These slits can be arranged into
parallel columns by selecting cells of Acen, = (L.• Ly) (where the x axis is parallel to the
slit plane). If the length Lx is increased and the length LY decreased, such that the cell
area Acel remains constant, the stress intensity factors will increase and so will the
effective compliance. If the cells are compressed in the direction of force and extended
in the other direction the effect will be opposite. Thus, the effect of the interaction can
be changed at will rendering further analyses non-objective (mesh dependent).
Furthermore, the cell model maximizes the smallest distance between the cracks by
assuming that they are all equal. It also minimizes the maximum crack length by
assuming that they are all equal. As such the cell model overestimates the strength of
the damaged solid. Additionally, the self-similar growth of defects is an artifice which
also represents a thermodynamically unstable path [9]. Finally, this model predicts
simultaneous occurrence of infinitely many percolation thresholds which is also
contrary to accepted criteria of a single percolation cluster [10]. It was shown that the
cell model overestimates by a factor of two or more the critical density of damage
required for the percolation transition. In summary, it seems that the cell model, despite
its many computational advantages, is of limited value in the analyses of stress
fluctuations in disordered microstructures and for the predictions of macro failure mode
and threshold.

4. MACRO RESPONSE

During a brittle deformation process the damage evolves by nucleation of new
microcracks, by growth of existing microcracks and/or by combination of two
processes. The mode and rate of the damage evolution depends on: (a) state of stress,
(b) strain rate, (c) temperature, (d) microstructural disorder and (e) chemical effects. For
brevity only the state of the stress and the microstructural disorder will be pursued in
this study.

The statement that the tensile stress promotes crack growth is too obvious to be
belabored further. Deformation will be, in this case, dominated by the propagation of
the critical (largest) defect. It is just as obvious that the crack nucleation is favored by a
situation in which a heterogeneous solid is subjected to a long range compressive field.
For example, in porous rocks, such as limestone, cracks are nucleated as a result of
Hertzian stresses at a contact of two hard grains. However, in absence of long range
tensile stresses these microcracks are arrested immediately after their nucleation. As a
result these microcracks will be of similar sizes and will be distributed randomly
throughout the specimen volume.

LJ



Energy barriers in a material with a disordered (heterogeneous) microstructure are
in many cases able to arrest the growth of smaller cracks. As a result the damage
tolerant materials (such as fiber reinforced resins) will accumulate damage before the
macro fracture takes place. On the other side of the spectrum the brittle materials with a
homogeneous microstructure will often fail as soon as the first pre-existing defect is
destabilized.

Thus, the state of stress may trigger three different macro responses, which will be
referred to as: (a) brittle, (b) quasi-brittle, and (c) "ductile". These macro-response are:

(a) A material with a homogeneous microstructure subjected to long range tensile
stresses will deform in a linear elastic manner until it fails. Whatever little damage takes
place is dominated by the propagation of pre-existing defect. As soon as the nonlinear
deformation is initiated a brittle solid ceases to be homogeneous.

(b.1) A damage tolerant material subjected to tensile stresses may accumulate a
significant density of microcracks before one of them grows to a size critical in the
Griffith's sense. During this process of damage accumulation the specimen stiffness
degrades as manifested by the curvature of the stress-strain curve. The material is
statistically homogeneous almost until the onset of the failure since the microcracks are
small in size during the nucleation dominated phase of the process. Only a very short
part of the deformation process preceding the macro failure is dominated by the crack
propagation.

(b.2) A weakly confined specimen, made of a material with an inferior cohesive
strength, which is subjected to compressive stresses will also accumulate damage up to
the point when the fluctuations associated with a cluster of interacting cracks cross over
from small to large range. The remarks related to the stress-strain curve, homogeneity
and damage accumulation in the cases (b.2) and (b.1) are quite similar.

(c) Damage evolution in a strongly confined specimen made of a material with an
inferior tensile strength (such as rock) subjected to a state of stress close to the
hydrostatic compression will be dominated by the microcrack nucleation. Nucleated
microcracks are immediately arrested by the compressive stress field. Inelastic
deformation is attributable to the crack nucleation, crushing, frictional sliding and re-
packing (pore collapse). Dislocation slip is in a brittle material, such as polycrystalline
ceramics, important primarily as the mechanism for crack nucleation. The accumulated
damage may be very large. In comminution processes the microcrack density may
exceed the value needed for the onset of the connectivity transition. A brittle material
subjected to a hydrostatic compression may harden up to very large strains. Never-
theless, once the connectivity transition is reached the material is disconnected
(crushed) becoming unable to carry any tensile or shear stress upon unloading.

5. FAILURE MODES

Failure in a perfectly brittle mode (a) is a statistical event which depends on the
distribution of defect sizes. The probability of finding a large crack in a specimen
depends not only on its microstructure but also on its size. Hence, the failure threshold
is a variate which depends on the constitutive properties of the solid and the specimen
size and shape. The failure criterion, in form of a non-deterministic limit curve
formulated on the basis of a stability (Griffith's) criterion, must in this case be added to
the constitutive description. This type of failure will be referred to as extrinsic or
structural.

Failure in a quasi-brittle mode depends on the outcome of the competition of brittle
(crack growth) and ductile (crack nucleation) processes. In the case characterized by the
presence of tensile stresses (b.1) eventual failure will, in a displacement controlled case,
almost always be triggered by the loss of stability of the crack which grew to a critical
length. In this case the failure mode is again extrinsic. However, under the force (stress)



controlled conditions macro failure may happen at the peak of the stress-strain curve,
i.e. when the effective tangential modulus is reduced to zero. In the (b.2) case the failure
may occur by localization, i.e. when a band of closely spaced (but not intersecting)
parallel interacting microcracks spans the specimen from one end to the other. In this
case the failure mode is again intrinsic since the onset of the localization can be
predicted on the basis of the acoustic tensor [11]. This type of failure, known as
cooperative phenomena, is related to the order-disorder transition since the fluctuations
associated with the shear band extend across the entire system at the onset of the
localization. Failure in the ductile mode is obviously intrinsic as well. The material
during comminution passes through the percolation (connectivity) transition. The onset
of the elastic percolation can be determined from the condition that the effective secant
(current) modulus is reduced to zero.

6. SUMMARY

In summary the variety of deformation modes and possible failures during a
deformation process characterized by microcracking is much larger than originally
estimated. The choice of the model depends on the deformation and failure mode.
Homogeneity can almost never be taken from granted and the statistical aspect of the
problem must always be considered. As any other continuum theory the damage
mechanics can be applied only in the case when the damaged material is statistically
homogeneous on a relatively small scale.
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ABSTRACT

The response of a very long composite layer being stretched beyond the elastic
limit in a displacement controlled experiment is investigated. It is assumed that the load
carried by a fiber is transferred, at failure, to its two neighbors. This local load sharing
rule is shown to lead to the propagation of the fiber breaking process and to be the source
of random spatial variations in the loads carried by the fibers. Then, a set of evolution
equations is derived that governs the spatial distribution of the random loads in three
types of unbroken fibers. The complexity associated with the determination of the solu-
tion to these equations has led to a Monte Carlo study that suggested an approximate
solution technique. It is shown that this simpler, approximate formulation represents very
well the initial set of equations. Finally, it is shown that the local load sharing rule leads
to a much higher probability of broken fibers and to higher loads carried by the fibers
than a global load sharing predicts. It is shown however that the mean value of these
loads is well approximated by the global load sharing rule except for the location of the
peak which is largely overpredicted by the global load sharing model.

Introduction

The accurate prediction of the behavior of composite materials is rendered difficult by the presence of

dissimilar phases, i.e. the matrix and the fibers, by the complex behavior of their interfaces, as well as by

the natural variability of the mechanical properties of the fibers. In particular, the mechanical behavior of

the composite material beyond the elastic regime is dictated by the complex interplay of the failure charac-

teristics of the fibers and the load transfer from the broken fibers to the remaining ones through the matrix.

A number of studies have in the past been devoted to the modeling of this load transfer mechanism to pre-

dict the failure process of composite materials. Many of these investigations have relied on the parallel bar

model in which the load imposed on an array of fibers is carried equally by all of them.1 Although this
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"*democratic model" remains widely used, several alternative descriptions of the load transfer mechanism

have been proposed, e.g. Ref. 2-10, some of which emphasize the local effects of the failure of a fiber.2-7 In

these studies, the force carried by a broken fiber is transmitted only to its neighbors, not to the entire array,

through the assistance of the matrix.

An interesting feature of these local load sharing mechanisms is their capability to exhibit the propa-

gation of a crack, i.e. the breaking of a fiber may, after load transfer, lead to the failure of one of its neigh-

bors which in turn could break and so on. It should however be recognized that the local aspects of this fail-

ure mechanism render the mean-field analysis of the composite material beyond its initial elastic regime

more challenging than if a global load sharing mechanism had been adopted since the state of a given fiber

(broken or intact) and the force it carries not only depends on its strength and the externally applied load

but also on the strength of the neighboring fibers.

The role of the present investigation is to provide a theoretical assessment of the effects of random

variations in the strengths of the fibers in a composite material under a local load sharing rule. It is assumed

that the fibers remain elastic until failure at which point the load they were carrying is transmitted, through

the matrix, to the two adjacent fibers, if they still exist. The source of randomness in the system originates

in the strengths of the fibers which are modeled as independent random variables uniformly distributed in a

given interval. Particularizing further the problem, a single composite layer will be considered that is sub-

jected to a displacement controlled experiment, the displacement, or stretch, being incremented in infinites-

imal steps. Under these conditions, the present investigation will focus on the determination of the random

properties of the composite from the first failure of a fiber until the complete failure of the layer. Emphasis

is placed on the quantitative effects of the local load sharing mechanism on the global behavior of the com-

posite rather than on the physical specificities of the load transfer mechanism. Thus, of particular interest in

this investigation will be the probability of existence of various types of fibers and the probability density

functions of the forces they carry. The results of both numerical simulations and theoretical predictions are

analyzed in comparison with the global load sharing (democratic) model.
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The Displacement Controlled Experiment

Consider a single, infinitely long, layer of a fiber reinforced composite material which is subjected, as

shown in Fig. 1, to the action of discrete forces Fk. These loads which act directly on the fibers are selected

to produce a displacement controlled experiment in which the fibers are all stretched by amounts dx, 2 dx,

3 dx.... It is desired to obtain the statistical distribution, mean value in particular, of the forces F& that must

be applied to produce a given stretch x of the fibers.

For simplicity, it is assumed that the fibers are all characterized by the same Young's modulus E,

cross section area A, and underformed length L0. Further, the strengths of the fibers, Sk, are modeled as

independent random variables uniformly distributed in the interval [ Smi , Smin . When a given fiber, the

m one say, breaks, the load it carries is set to zero, see Fig. 2, and the fiber-to-fiber interaction through the

adjacent matrix leads to a transfer of a fraction p of the load carried by the failing fiber to each of its two

neighbors.

Under these conditions, it is seen that the forces Fk are deterministic quantities for values of the

stretch x that create forces Fk < Si,,.. Specifically, it is found that

Fk=EA - forx< E-'-"nand k=O,±-,±2,
( L ) E A

L0 S~a
When x exceeds the value L , failure occurs in some fibers and the corresponding loads are transmit-

EA

ted to their neighbors. The randomness of the fiber strengths implies that the fiber breaking process, and

consequently the loads Fk, are also random. The assumptions on the fiber strengths, independence and

identical distribution, and on the unboundedness of the domain imply that F, is in fact a spatially homoge-

Lo S~i
neous stochastic process for x > E

-EA

It is desired to evaluate the distribution of the loads Fk carried by the fibers. To this end, introduce

first the dimensionless forces and displacement, Fk and .9, according to

Fk = Sd + ( S..1 - Smi ) Pit (2)

and
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x= I Si. + (S. - Si.) " (3a)

Similarly, the random strength Sk can be expressed as

Skt = S.mi. + (S.. - Si. ) Nt (3b)

where Nk are independent random variables uniformly distributed in [ 0, 1].

Clearly then, the layer behaves both elastically and deterministically for I < 0, while the fiber break-

ing process creates, for > 0, both an inelastic response and a random distribution of forces Pk. Note finally

that all fibers are broken forl = 1.

In evaluating the distribution of the loads Fk, it should first be recognized that there exist broken

fibers and three types of unbroken ones, as shown in Fig. 3. The terms regular, stopping, and singular will

be used to denote fibers which are, respectively, surrounded by 2, 1, and 0 unbroken fibers. Since regular

fibers have not been involved in the failure process of any of their unbroken neighbors, the load they carry

is still governed by Eq. (1), even for . > 0. Relying on Eq. (2) and (3), it is found that the normalized force

Pk corresponding to a regular fiber is simply governed by Pk = 9. Such a simple relationship does not exist

for stopping and singular fibers because the load(s) that was (were) transferred from their broken neigh-

bor(s) is (are) a function of the neighbors' random strength.

The various types of fibers and their properties can thus be summarized as follows:

Regular fibers: 2 unbroken neighbors

probability of existence: p = p(X)

force carried: deterministic,k =Pk

Stopping fibers: 1 unbroken neighbor

probability of existence: q = q(.)

force carried: random with distribution Q(f, X), nonzero for f e [Xi, 1]
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Singular fibers: 0 unbroken neighbor

probability of existence: r = r(I)

force carried: random with distribution R(f, x), nonzero for f r [.9, 1]

Broken fibers: probability of existence: I - p - q - r

force carried: deterministic, Fk = 0, Pk=-[ SJDin

With these notations, it is found that the mean of the forces Fk and Pk are, respectively,

E [Fk] = Smn +(Sm.x - Smim) E [ P] (4)

and

E[F"k] =p() + q(X) f f Q(f.) df + r(I) f f R(f,) d -[1- p(.) - q(X) - r(g)[ Smx-Smin

(5)

The determination of the probabilities p(X), q(x), r(X) and probability density functions Q(f, X) and

RUf, ) will be approached as follows. First, the breaking of a fiber and its propagation in the layer will be

analyzed. These results will then be used to derive a set of ordinary and partial differential equations that

govern the evolution of the functions p(X), q(X), r(x), Q(f,X), and R(,X) as the variable 9 is increased

from 0 to 1. A Monte Carlo analysis will then be performed to provide insight into the behavior of these

functions. These numerical results will in tum be used to produce a reduced set of ordinary differential

equations that describe approximately the evolution of p(.X), q(x), and r(.) as x is increased from 0 to 1.

The accuracy of this approximation will be evaluated by comparison with the results of the Monte Carlo

simulation data. Finally, the differences between the present local load sharing rule and a global one will be

discussed.
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Failure Mechanism and Propagation

Consider, as in Fig. 2 and 3, a composite layer which has already undergone inelastic deformation

and assume that the corresponding functions p(X), q(&), r(.9), Q(f, j), and R(f, ) are known. Then, as a

stretch increment d9 is applied to the system, an instantaneous increase of the loads Pk is also produced.

The initial force increment dFk = dX provokes the failure of fibers that were carrying forces equal to their

respective strengths at the end of the previous stretch increase. These failures lead to a redistribution

(increase) of the forces in the surrounding fibers which in turn can lead to new failures. The failure process

continues until each fiber is subjected to a force that is less than its strength.

In this section, it is desired to determine the probability associated with the failure of a total N = n of

fibers, not counting the initial one, some of which may be regular, stopping and/or singular, that is initiated

by an increase in stretch, from f to X + dX. To this end, it is first noted that the initiation of the fiber break-

ing process is associated with either a regular, a stopping, or a singular fiber.

Initiation at a Regular Fiber

Note first that the failure of a regular fiber leads to a breaking process that can extend both left and

right of the initiating fiber the index of which will be denoted by m. The homogeneous character of the

fiber strengths Sk implies that the left and right propagating failure processes are characterized by identical

probabilities so that it is sufficient to consider only one of these mechanisms, the right propagating one say.

For this process and with n > 2,

Pr [ (N = n ) n (fiber m is regular)] = Pr [ (fiber m is regular) Pl (P, + dP. m,.) I Xm I $

x Pr [(fiber m+i is regular) n (P'"m+i 2! Sm+i) I 9,j i 9]} Pr [failure stops] (6)

where P',m+g denotes the dimensionless force in the fiber m + i after the failure of the fiber m + i - 1. Thus,

F'M+i = F..ri + p F'.,i-l (7a)

or
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',.= Pn, + p P',,,"-I + P S j- (7b)

where

(8)

and

P,.+ = i 1, .... -2(9)

since the fibers m + 1, m + 2,..., m + n - 1 are all regular. The solution of the above recurrence relation, Eq.

(7b) and (9), with the initial condition given by Eq. (8) is readily determined to be

Smi (10)

Relying again on the regular character of the fibers m + 1, m + 2, ... , m + n - 1, it is found that

Pr [x S m•i <<-F'm+i ]
Pr [(fiber m + iis regular )('T((P',Ž4> ) I •,,,+ > I]= Pr [fiber m + iis regulari]

Pr [S,.+j >L 9]

P F',P+ a- X+Xo fort',+j i (11a)
p+q' 1i- p+q q' 1-2

where

q q = Pr [fiber m + i is stopping I fiber m + i - 1 is regular] (1 lb)
2

ai=p 1-p (1 1c)

and

xo= S-m1 " (11d)
USmax - Si

When P',.i _> 1, it is found that

Pr[(fiberm+iisregular)( (P',i>-t,+9 ) ,I Sl,+>j X- P for F'm,+i _ 1. (lie)p+q"

pp + qc
Note that Pr [ fiber in+ i is regular]=- since the regular character of the fiber m + i- i restricts the

p+q'
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fiber m + i to be either regular or stopping.

The probability Pr [ (fiber m is regular)l (Pt,. + 0 >, )1 >: 1] is similarly computed as

- Pr[X•<••,<_,,+dFm] dx
Pr [ (fiber m is regular ) t- (P. + dFP >Sm ) I S. > 9 ] = p Pr [X ,,, > : ] = p -1- d

(12)

Consider now the last term in Eq. (6), Pr [failure stops], and note in particular that the fiber break-

ing process stops with n fibers breaking in addition to the initial one, if and only if

(1) the fibers m + n and m + n + 1 are both regular but the former one breaks while the latter successfully

carries its load

(2) the fiber m + n is regular and breaks while the following one is a stopping fiber which sustains the

transmitted force

(3) the fiber m + n is a stopping one and breaks

Accordingly,

Pr [ failure stops] = Pr [ (fiber m + n is regular) ( (F'm+n > Sm+n) Im•n > x]

x Pr [ (fiber m + n + 1 is regular) :5 (F',,,+,,+i < •,+,*1) I g,+.+1 > x]

+ Pr [ (fiber in + n is regular) )(' -]

x Pr [ (fiber m + n + 1 is stopping) ('5 (F".,.1. < •,+n+i) Im+,+1 >

+Pr[(fiber m+nis stopping) 1(9"m >S,+R)Ig,,+. ;>,+]=PI +P 2 +P 3  (13)

where F.+i and P"".+ designate, respectively, the dimensionless forces in the stopping fiber m + i before

and after the failure of the regular fiber m + i - 1. Proceeding as in Eq. (7)-(10), it is found that

+" = + P'"_ + p o = F,.+ + ai (t + Xo). (14)

The probabilities P1, P2, and P3, Eq. (13), can readily be written as

P1 = Pr [(fiber m + n is regular) fl (P',+n > 'm+n) I X > .i]
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xl P - Pr [(fiber m+n+ 1 is regular) n (',g('1 +,,+1  ,,+,•+)I• >i} (15a)
p+q'

P2 = Pr [ (fiber m + n is regular) n ( 'm+n > Sm+n) I x+, > ]

x Pr [ (fiber m + n + 1 is stopping) n'i (9P"m+.+i < .+,nl ) M+,+r ;> Pm+p.+] (15b)

and

P3= q -Pr [(fiber m+n is stopping)n("(P",+j < m+n)l•,+n>P,.+n] (15c)p+q"

where Pr [(fiber m + i is regular) (n (F',, - , I 9,,j+i X X], i=n - 1, n, can be evaluated by using

Eq. (11) while, in view of Eq. (14),

Oi = Pr [ (fiber m + i is stopping) (n (P",+i: <Sm+i) I 3.+• > F,+i]

q' Pr[,F"+ai(x+Xo)<rS"+j] (16)

p + q' Pr [ S.+i > Fmij ]

The independence of the fiber strengths Sk implies that the random force Fm+i and strength Sm+i are also

independent so that

Pr [P". + ai (I + 1 0 ) <- S," ] Q d 1 -

I f+a•(+

=•_ t2 5 I [la,(X+9o)_f Q(fJ)df. (17)

J•

One finds similarly

Pr S. P,+j ] = -i I[f Q(fx) df (18)

so that
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f-••o [1 -ai(.f+ go) -f I Q(f.X) df

J), (19)
1

Note that this expression is valid only for 1 - ai (.9 +.o) or ( 1 + ai ) 9:5 1 - aifo. In the contrary, ei= 0.

Combining Eq. (6), (11)-(13), and (15)-(16), and introducing the sequence of functions a•(X)- a

defined by the recurrence relation

ai= pT PIai-I for(1+aj) f 51-aj.!0  (20a)

or

xi= f ai-I for (1 + ai) X >- I - a i X0 (20b)

for i Ž1, and

a 0 =1, ai=O fori<O (20c)

it is found that

PrN n df a.1 P (,X + -to) (p + q, 8,.+)_, + P (-x + .fo)(1 + 9) (p +q')fl+l I 5 FP Xo1)]Pr[N=n]= (d+x----- (p q)la, [1- J -

+ a, [ ('+ io) ] q'(p + q') (1- 8.) (21)

and

f" (1 -y•- f) Q(f,..) df

EOi = 1 (22)

w i1tf I Q(fh , ) 4f

With
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7i = - (X + .0). (23)
'ri-I

The above relations, Eq. (21) in particular, would appear to be, as Eq. (6), only valid for n Ž2. It can how-

ever be shown that they are also valid for n = 0 and n= 1 because of the definition of a0(X) and a, (x), Eq.

(20c).

Initiation at a Stopping Fiber

The determination of the probability that a total of N = n fibers, not counting the initial one, are bro-

ken when the fiber initiating the failure process is a stopping one, is computed in a totally analogous man-

ner as in the previous section. Note however that Eq. (7) and (9) are still valid but the correct initial condi-

tion is

=P (24)

where F,. is a random variable distributed in the interval [ 9, 1 ] according to the probability density func-

tion Q(f, X). The force in the regular fiber m + i immediately after the failure of the fiber m + i - 1 is then

~-a,

Pi"+ I.P + - (.9 +p Xo). (25)

Proceeding as in the last section, it can be shown that

Pr [N = n]= 1 (p+q,);+ p [(p+ q'O.++ -t

~ (p~q)A-- M [i]

+ q' p"' (p + q) (1 - 0.) [1i 'Z n 20, (26)

where the following convention is applicable

0 k

I-Ili=l and I-j'P/=0 fork<0. (27)

Further, the terms 'F and Oj, i > 1, are defined as
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,,a1,,) -a•(g + P go ) - Pi f

t=l- f - I P Q(fU, 9) df (28)

where

p-( ++pgo) -i

11 (29)

and

o= 1 (30a)

f f[1-fi- pifo -ai-lx9- ai go IQ (fo, 9) Q(fij,.9)dfi dfo

0i1 (30b)

f (1- f) Q(f, X) df

with

Ei = 1 - pi fo - ai-I X - ai 2o. (31)

Initiation at a Singular Fiber

It remains to analyze the effect of the breaking of a singular fiber. Clearly, the failure process is lim-

ited to the initiating singular fiber. Thus,

r d
Pr [N = 01] = d (32a)

J (1 - f) R(f,•X) df

and

Pr[N=n]=0 forn_1. (32b)
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The Evolution Equations and

their Numerical Solutions

Derivation

The results derived in the previous section permit the derivation of a set of ordinary and partial differ-

ential equations for the variables p(g), q(Xf), r(g), Q(f, 1), and R(f, X). Consider first the probability p(.g)

and note that

p(X + dX) = p(X) - Pr [initiation of failure at a regular fiber ]

x 1 + 2 corresponding expected number of broken regular fibers]

- Pr [ initiation of failure at a stopping fiber ]

x [ corresponding expected number of broken regular fibers (33)

Note that the expected number of broken regular fibers, which does not include the possible initial one, can

be written as Y n Pr [ Nr,g = n ], where the probability that n regular fibers break, Pr [ Nrg = n ], can be
n=4)

determined from Eq. (21) and (26). Then, it can be shown that Eq. (33) reduces to the first order ordinary

differential equation

dp __ p 2p~--- p(9+1a) ja7dp P 1+ P+(-) Ta,
d"- =-- 1- p• (p+q')(1

2pq' p (34)

(p+q') f (1 - f)Q(f, X) df
I

Balance equations similar to Eq. (33) can be derived for the probabilities q and r and for the probability

density functions Q(f X) and R(f, .) which, after some lengthy but straightforward algebraic manipula-

tions, can be shown to reduce to the following differential equations
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dq. 1-[ 2q' (-pX+qp+) q' 1

S4q 12 Z • ,(35)

(p+ q') J (1-f) Q(f,.t)f (=5
i

&r 2 2pq' P(9p.+90) a.-- =-(p+ q')-) (1 (p+ q')(1- a O+

+- 2 q'2  - ( Piq T(i'i) 0.+1  ~ r (36)S1 2:0 + q' =
(p + q') f (I1 - f.) Q(.f,.g) df f ( 1 - f) R(f,.t) df

I I

'- ( q aQ) = - q Q"+ F, (37)a af 37

and

b aRT- (r R) = - r + F2. (38)

The terms F1 and F 2 can be expressed in the form

2 p P (9x+ .90) +1+i ,-i al.

+1R+

F1 =-xo (pq)(- I a. 1- 5aa6f.(l-•) -

2q'Q(f,g) ;( p(X+Xo) +1 . .p ,n+1 . 1 ( f (2
) a.+2.q' - Q a'-;-(i pxf,,=o . PP + q' f ,+ nl p

2 q" Q(f , 9) 2 q/2 Q(f ,g) " ( •q"I] filv (39)

I I
h ef )Q)f, d n of s (t -Dfc) Qd ta n) nf

where 8(f) denotes the Dirac delta function and
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2q 1f P(+o) (X+-o),
t +o ( -f)Q(f,9)df (p+ q') ) Q fa,,

+2 q, 1- f P ,R f( JIF3 - (40)
p+q [L (1-f)RQ(f.f.)df{ (I-f)R~f~x)df

where

F3  f Q(v,g) Q (f - p,+ v - a, x - a.+l xo dv (41)
V1

and

V2 = min 11, (f -.- a, 1 - a ,+ Xo) (42b)

The differential equations (34)-(38) require a set of initial and boundary conditions for the functions p(f),

q(9), r(g), Q(f, 9) and R(f, 9). Clearly, at 9= 0, no bar has yet failed and

p(O) = 1 q(O) = 0 r(O) = O. (43)

For very small values of 9, a few fibers are broken but the load they carry is in fact very close to the elastic

value Pk = 9. It is then concluded that

lim Qaf, 9) = .im R(f, .) = 8(f - 9). (44)

2-40 2-.)0

Finally, the probability density functions must satisfy the normalization conditions

1 1

f Q(f. 1) df = R(f,.!) df = 1. (45)
i x
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Numerical Solutions

Of particular interest in the present investigation is the study of the distribution of the forces in the

fibers when Si,, << S,,,,. In this case, the parameter .Xo is approximately zero. Although this assumption

provides a minor simplification of Eq. (34)-(36), the numerical evaluation of the functions p(.f), q(X), r(X),

Q(f, .X), and R(f, X) that satisfy these equations represents a serious computational challenge in view of the

strong nonlinear character of Eq. (37) and (38). This numerical approach can be circumvented by proceed-

ing with a Monte Carlo simulation of the fiber breaking process. To this end, a composite layer containing

100,000 fibers was subjected to a displacement controlled experiment. Shown in Fig. 4-10 are the probabili-

ties p, q, and r for X E [0,1] (Fig. 4), and the probability density functions Q(f, X) and R(f, J) for X= 0. 1,

0.2, and 0.4.

It can be observed from these figures that the probability density function R(fU,) has essentially a

triangular shape, so that

S4(
4- (f- -)0 forf E [1,1.5.t]

R(fj) 4 12(46)
S(21-f) forf E [1.5X,2.X]

A reliable approximation of the probability density function Q(f, 1) can also be obtained. To this end, note

first that for 9-0, Q(f,g) is very close to a step function extending from X to 1.51. As f increases, the

sharp transition at f= 1.5 X appears to remain while the function Q(f , ) decreases almost linearly both

left and right of this value. Noting that the two slopes are very similar, it is proposed to approximate

QCf, ) in the following way

2
---- a(f-X) forfE[X,1.5 ]O(f, T)- X• (47)
a (2.f-f) for f E [ 1.5 i,2.]

where a denotes the common unknown slope of Q(f, ) in f e [1T, 1.5 " ] and f E [ 1.5X, 2X. ]. This vari-

able must be such that the above approximate representation of Q(f, X), Eq. (47), satisfies Eq. (37) in some

way. Specifically, it will required that the error in Eq. (37) have a zero mean. That is,
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Sf -x( qQ ) + q-Qf-- Fj df=0. (48)

This Galerkin-type approach leads to the following ordinary differential equation for the slope a

qX d(aX2) [5 (a X)X dq _ [ 1 a 2 1
24 dX [4 4 J d'- + (49)

The expression for the term f f F, df is omitted here for brevity, it is readily computed by relying on Eq.
X

(40). Equation (47) indicates that the slope a affects the probability density function Q(f, X) through the

product a 12. Thus, it is suggested to associate to Eq. (49) the initial condition

lim a(X) X2 = finite. (50a).i--)o

A limiting analysis of the various terms in Eq. (49) demonstrates that the above condition can indeed be

enforced. In fact, it is found that

lir a(i) X2 = 0 (50b)

i-40

which is consistent with Fig. 5.

The knowledge, even approximate, of the probability density functions Q(f, x) and R(f, X) permits

the evaluation of the terms 8j, Eq. (22), Ti, Eq. (28), and Di, Eq. (30). Equations (34)-(36), complemented

by Eq. (49), represent then a well defined set of first order differential equations that can be solved by stan-

dard techniques. To test the validity of this approximate formulation, it was decided to investigate first the

behavior of the probabilities p, q, and r, forf - 0. In this case, it is sufficient to impose a = 0 for all values

of X. Shown in Fig. 4 are the probabilities p(i), q(X), and r(X) computed by Monte Carlo simulation and

from Eq. (34)-(36), (46), and (47). It is readily seen that this simple approximation already provides a very

reliable model for the probabilities of existence of regular, stopping, and singular fibers for .9 e [ 0, 0. 45 ].

A similar accuracy is also obtained in connection with the average load carried by the fibers, Eq. (5), see

Fig. 12. Note that the numerical solution of Eq. (34)-(36) was halted at ý = 0. 45 because the system had

already entered the less interesting softening range. If needed, a reliable approximation of this behavior can

also be obtained by allowing the slope to vary according to Eq. (49).
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Local and Global Load Sharing: A Comparison

When all of the fibers share the external load, there is no spatial variation of the force in the fibers

and Pk = . if the fiber is not broken. The probability that a given fiber is broken is thus readily evaluated as

Pr [ broken fiber ] = X. (51)

Relying on the independence of the fiber strengths Sk it is then found that

PG(2) = (1 - i)' (52)

qG(x)= 2X (I -_.)2 (53)

rG (M' = y2 (I g ) (54)

and

QG(f,t) = RG(f,f) =8a(f- X). (55)

A comparison of the probabilities p(l), q(.X), and r(.) corresponding to the local and global load sharing

models is presented in Fig. 11. It is seen that the global load sharing model overpredicts the probability of

finding regular, stopping, and singular fibers. This observation is expected since the local transfer mecha-

nism leads to a propagation of the fiber breaking process that is not consistent with a global load sharing

rule. The existence of a smaller number of unbroken fibers is also consistent with the increase loads they

carry, compare Eq. (55) and Fig. 5-10. Surprisingly, these two effects seem to cancel each other when con-

sidering the mean value of the force, Fig. 12, which is very close, for X E [ 0, 0. 5 ], to the parabolic shape

. ( 1 - X) predicted by the global load sharing rule except for the location of the peak which is largely

overestimated by the global load sharing model.

Summary

In this paper, a single composite layer has been considered and its random inelastic response in a dis-

placement controlled experiment has been investigated when a local load sharing mechanism is present. It

was first recognized that the randomness in the fiber strengths and the force transfer that is associated with

a local load sharing rule permit the propagation of the breaking of fibers. This process results in the
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existence of three different types of unbroken fibers which were termed regular, stopping, and singular, they

are surrounded by 2, 1, and 0 unbroken fibers, respectively. It was then recognized that the load carried by

regular fibers is the same as if failure had not occurred. The forces in the stopping and singular fibers were

however found to be random and to be in general larger than the values obtained in the absence of failure.

For a given applied displacement X, the determination of the probabilities of existence of regular,

stopping, and singular fibers, denoted by p(G), q(X) and r(.), and the probability density functions of the

force carried by the stopping and singular fibers, Q(f, X) and R(f, j), was approached as follows. First, the

breaking of a fiber and its propagation in the layer was analyzed from a stochastic point of view. In particu-

lar, the probability associated with the breaking of n fibers was determined when the process is initiated at a

regular, a stopping, or at a singular fiber.

A set of "continuity-like" equations was then derived by analyzing the changes in fiber types and in

load carried that result from the fiber breaking process. In turn, these relations were seen to reduce to a set

of ordinary and partial differential equations that govern the evolution of the functions p(g), q(.), r(g),

Q(f,X), and RUf,fc) as the variable . is increased from 0 to 1. The complexity of these equations moti-

vated the search for an approximate solution technique.

To this end, a Monte Carlo simulation study was undertaken to provide insight into the behavior of

these functions. It was in particular recognized that the probability density functions Q(f, i) and R(Jf, X)

can be accurately represented by the expressions given in Eq. (46)-(47) for the particular case of interest.

Introducing these approximations in Eq. (34)-(36) led to a much simpler numerical problem that can be

solved by using traditional ordinary differential equation solvers. The accuracy of these approximate results

was demonstrated; a reliable approximation of the probabilities p, q, r, but also of the probability density

functions Q(fJ, X) and R(f, .9) was obtained.

Finally, a comparative analysis of the behavior of the composite layer under both local and global

load sharing was performed. It was shown in particular that the global mechanism can seriously overesti-

mate the number of unbroken fibers and underestimate the distribution of the forces in the fibers. However,

it was found that the mean value of the loads carried by the fibers is reasonably well predicted by the global

load sharing model except for the location of the peak which is largely overestimated by the global load
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sharing model.
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ABSTRACT

In an attempt to explain the phenomenon of fiber clustering, the low Reynolds
number flow through an array of rigid cylinders is investigated. Both cases of a regular
and a slightly perturbed array of cylinders are studied. In particular, the forces exerted on
the cylinders by the fluid are derived for both cases and a stability analysis is conducted
to predict the motion of the array.

Introduction

The design of a manufacturing process that leads to composite materials possessing optimal proper-

ties represents an important technological challenge. One of the difficulties that are often encountered is

the lack of uniformity of the distribution of fibers in the matrix. This generic problem which affects both

short and continuous fibers composites originates in particular in the flow of the resin through the arrange-

ment of fibers. Consider for example the process of impregnation of thermoplastic composites which starts

with the introduction of a polymeric matrix into a fiber tow. As a result of heating, the matrix softens and

starts flowing into the spaces separating the adjacent fiber tows. While flowing through the "channels"

formed by the adjacent tows, the viscous mass exerts significant pressures and shears on the tows which

may cause both their flexure and rigid body displacement This process may lead to concentration of fibers

into small areas, or clusters, and to the formation of matrix-rich domains which are almost devoid of fibers.

One of the possible explanation of this phenomenon associates the fiber clustering with an initial irregular-

ity of the array of fibers. The goal of the present investigation is to test the validity of this mechanism. To

this end, the motion of a fluid (the resin) through an array of cylinders (the fibers) will be investigated. In
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particular, the present study will focus on the determination of the change in the forces exerted by the fluid

on the cylinders as they move away from their initially regular arrangement. Finally, these results will be

used to test the stability of the entire array of fibers.

The Flow Equations

The fluid flow past an array of cylinders has been the subject of a large number of both theoretical

and experimental investigations. The two limiting cases of a fully turbulent flow, corresponding to a very

large Reynolds number (see Chen et al., 1990, Conca. et al., 1990, and references therein), and of a creep-

ing motion, modeling very low Reynolds number situations (see in particular Tamada and Fujikawa, 1957,

Miyagi, 1958, Hasimoto, 1959, Kirsch and Fuchs, 1967, Happel and Brenner, 1973, White, 1974, Drum-

mond and Tahir, 1984 and references therein), have been especially emphasized. In the context of the man-

ufacturing of thermoplastics it is found that a low mean velocity, U, a high kinematic viscosity, v, and a

small diameter of the fibers, D, lead to a very small Reynolds number

Re = UD << 1 (1)

where p is the mass density of the resin. The theory of linear creeping flows thus represents an appropriate

framework for the present analysis.

The derivation of the flow equations corresponding to the limiting case of a very small Reynolds

number is a classical topic of fluid mechanics. Neglecting all inertia terms, Stokes first showed that the

continuity and momentum equations reduced to

div v =0 (2)

and

/ V2 V V p (3)

where V and P are the velocity and the pressure fields, respectively. Further, the symbol p denotes the

dynamic viscosity which is defined as
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1= p v. (4)

Introducing the vorticity vector w2 as

w = curl V (5)

it is readily shown that Eq. (2) and (3) can be rewritten in the form

V2 P -0 (6)

and

V2 W 0 _. (7)

A series of investigations (see White, 1974, and Happel and Brenner, 1973, for details) have shown that Eq.

(6) and (7) lead, in the case of three-dimensional flows around immersed bodies, to accurate estimates of

the flow characteristics in a large domain surrounding the body, and consequently of the drag and lift

forces. In the far field, however, Stokes' equation, Eq. (3), predicts inertia terms that are not negligible, as

was initially assumed in its derivation. Further, the solution of plane flow problems by relying on Eq. (7) is

affected by Stokes' paradox: it is not always possible to find a steady solution of Eq. (6) and (7) that also

satisfies the boundary conditions on the surface of the immersed body (no-slip condition) and in the far-

field. These weaknesses of Stokes' equation have led Oseen to conserve the inertia term p U a7 in the for-

mulation, leading to the following steady momentum equation

PU ay-=- VP +U V 21. (8)

The above relation, at the contrary of Stokes' equation, leads to a uniformly valid approximation of the

three-dimensional fluid flow around an immersed body. Further, it admits steady two dimensional solutions

that satisfy the required boundary conditions on the immersed body and in the far-field. Notwithstanding

these advantages, it should be noted that Stokes' and Oseen's equations, Eq. (7) and (8), both represent

zeroth order approximations of the Navier-Stokes equations corresponding to a low Reynolds number.

Thus, it cannot in general be inferred that the use of Eq. (8) will lead to estimates of the forces acting

on the body that are more accurate than the corresponding approximations derived from Eq. (7). (Happel
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and Brenner, 1973). In the context of the flow through a perturbed array of fibers, this observation indicates

that the simplest of the two momentum equations, that is Eq. (7), be used provided that it yields an accept-

able flow field. The lack of a fluid only "far field" and the existence of a Stokes' creeping flow through a

regular arrangement of cylinders (see Hasimoto, 1959, Sangani and Acrivos, 1982, Drummond and Tahir,

1984) suggest that Stokes' paradox will not be present. Consequently, Eq. (7) will indeed yield the required

low Reynolds number approximation.

Assumed Solution

In the case of a two-dimensional flow, the vorticity vector can be written in the form

QT 0, 0, a0, (9)

with

av au
aWS =T -. T (10)

where u and v denote the components of the velocity in the plane of motion,

V=[u, v, 0]. (11)

Introducing the polar coordinates (r, 0), it can be shown that the solutions of Eq. (7) and (9) admit the rep-

resentations

w, =F, Inr+F 2 1nr+F 3 0+F 4 ++ B.Br-e' e"°+C. r' eWiB+D r'Ce'm' +E.. rme•I),=

(12)

where BE, C, D., E., m = 1,.. and F1, F2, F3, F4 are arbitrary constants. The single-valuedness of the

vorticity component o), under a rotation by an angle 2 r around the z-axis requires that the coefficients F1

and F3 be identically zero. Further, imposing that w, vanish at infinity, r = o, leads to the condition

F 2 = F4 = 0 (13)
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and

Dm = Em =0, m = 1,.. (14)

Finally, the real character of the vorticity vector for all values of r and 0 requires that the constants Bm and

C. be complex conjugates of each other, or

Cm" = A , m = 1,... (15)

Under these conditions, it is found that ao, can be expressed in the form

= Bm r' e m rm + " (16)

where

z=x+iy=re'°. (17)

The next step of the analysis consists in the determination of the velocity field V that corresponds to the

vorticity component aw, Eq. (16). This computation is greatly simplified by introducing first the complex

velocity W as

W =u - i v (18)

and noting that

-= 2 I(+i a (u-iv)=2 au-+' z I Iy =-au(19)
a aXTY)2TX TY) T Txy)]_

where the last equality results from Eq. (2) and (10). Then integrating Eq. (16) with respect to F yields

1 [,m - ( ff. 1-
W =_ I . " (-1 ) •,- + B, -F +,ff, In Y -+ +' / In z

2i 2 zM (M -1) Y-1'zM 2

(20)

1 -
where Am, m = 1,.. are arbitrary complex constants. Note that the term FB1 In z is required to produce

single-valued velocity components u and v.
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The singularity displayed by the flow field, Eq. (20), at z = 0 is clearly inadmissible unless that point

does not belong to the fluid domain. More precisely, it can be argued that this point must coincide with the

center of one of the fibers. Symmetry considerations dictate, however, that no one cylinder has a privileged

role in the analysis. Thus, there must be a singularity of the flow field, Eq. (20), at the center of each fiber

and (see also Tamada and Fujikawa, 1957, Drummond and Tahir, 1984)

W=113 Wjq (21a)
p q

where

1___(B _ (f- _ _ _ _ . (I-Sypq)

[-(z sp)m (m-l)(E-,)1B (z - Spq)

+ Bpq In zp 12 - A•q
In I I" (21b)

Spq (z - )

In the above relation, the double summation over the cylinder indices p and q extends over the entire array

and spq denotes, as in Fig. 1, the complex number associated with the position vector of the fiber in the ph

column and the qth row.

The boundary conditions, to be described next, will provide the necessary equations to compute the

values of the complex coefficients Afq and BP9 corresponding to each of the fibers, thus completing the

determination of the velocity field in the array. Once this information is available, it is quite simple to deter-

mine the pressure field and the forces exerted on the cylinders. Specifically, note first from Eq. (3) that

/uV2 W=/U V2 u-iV 2 v =U-ap -- i a =2- a z (22)

Then, using the identity

V2 W = 4 e W (23)

and integrating Eq. (22) over z, it is found that

a WP = 2,u -- + g(z-) = -ipw•, +g(z-) (24)
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where g(z-) denotes a function of Y such that the corresponding pressure field P is real. Finally, the complex

force acting on the fiber pq can be evaluated as (Miyagi, 1958)

FP =F +iF = f(iP+uw,)dz (25)
pq

where the notation f denotes the integral over the contour of the circle pq. Combining Eq. (24) and (25), it
pq

is found that

FN =i f g(z-) dz +2p 2 w, dz=4 i ir # Bf,. (26)
pq pq

No-Slip Boundary Conditions

To give rise to a bonafide velocity distribution, the constants Anq and Bq must yield vanishing com-

ponents u and v on the exterior surface of each fiber. Denoting by a the common radius of the fibers, it is

then required that

W=O forz=s,,+ae' (27)

at every angle 0 and for all cylinder indices p and q. Combining Eq. (21) and (27) and expanding the terms

(sl-sN+ae'°)' andln I s.-Spq+aea1 in the form

(s.s-s+aei)-=(S'.- S P- (-mr [ a J e"o for (r,s)•:(p,q) (28)

and

In ISr' SNq+ ae SffS - 2o (S [ an N eatB
r=-I S" -- Spq

+ y-1- a J er for (r,s) •(p, q) (29)
yl ta F l e opw o

yields a Fourier-like expansion of W involving the powers of ?i. Since the functions e"o form a basis over
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the domain P E [0,2 x]1, it is necessary, to satisfy Eq. (27), that the coefficient of each power e"O in the

expansion of W be set to zero. That is,

I ... .. + 1F In 1 F p 1
(p.q),i(r) ,

,2 2i (S,,-S ) s,.-S )+ 2i (m- 1) ( ,. - Spq)j-

(30)

(,,€ )*(r..,) +A~ (_I.+ a 1rp ) (--a)'+ B P

Bs O (S,,' - s( p t (s - s

+ " 2iL +- ( s, -snm)•+t+l t +1 2i t a2,..
+B _ _ _ _ 1+ a +B1'Op a

m(32

Sr=' - "•.° TZ Ptq-- m pts

a B a Ba gp a 1 a 'Apq (

I 2i- (S,-,S ) 2i (TA.-.,,) - m2i('-"S+ )" -2 2i (Sr,1-pq)m a

(32)

[ '•t a Eq T_' ma2 _ A2 +1Br'=0 (33)

(p,q)*(r,s)

p.q I-2i t (Y,. - Yp 2 - "t (M - 1) ( 3.- sY )m,-
(p.q),,(ro)
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+_A•' -tB''- 1
S -=0 t=3,4.... (34)

at 2i a'72

Flow Past a Regular Array

It will be seen in the next section that the determination of the flow past a perturbed array of cylinders

requires the knowledge of the corresponding solution for a regular arrangement. The latter flow field can be

determined either by relying on the power series expressions derived by Drummond and Tahir (1984) or by

a direct application of Eq. (31)-(34). In the case of a regular array, it is expected that the cylinders all have

an identical effect on the flow, or equivalently, that

B~q-= ,B for all p and q and m = 1,.. (35)

and

Afq = A° for all p and q and m = 1,.. (36)

for some complex numbers A0. and B° .Then, introducing Eq. (35) and (36) in Eq. (31)-(34) yields the fol-

lowing linear system of equations

A at,,- ' ('- JFm,(,0) +t [ (-a)' G,+1(0,0) + (-1)t+' a'+2 F,+2(0,0) + 2i [/ L aF,(0,O)n' I : t 2 2
M2i a' Gm+,(O,0) + t+-m a'12 Fm+,+,÷(0.0) t 1-- 0 (37)

AO B _ B 0 A~2BO ma0

-F +(B (39)

a2i 2i 2,, 2 2i 2

and
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A?, 1 B?..1  90? [&aYt 1[(-m+1 ) 1'A°T + -_ ý F., --m (+ 10
a- a'-2 2i 2i t t i F,+-2(O, O) = O.

(40)

In the above equations, the symbols F.(0, 0) and G. (0, 0) have been used for brevity to designate the fol-

lowing series

1
F.(0,0)= m = 1.... (41)

p,q SN
(,p,qX,,OO)

and

G.(0,0) = s m=2 .... (42)
P pq

(p,q)*(OO)

where the summation over the indices p and q extends over the entire array with the exception of the cylin-

der (0,0). It should be noted that the coefficients Fm(O, 0) and G.(O, 0) are affected by convergence prob-

lems. In particular, F 2 (0, 0) and G3(0, 0) are indeterminate; their values depend on the order of summation.

Drummond and Tahir (1984) have resolved this issue by using symmetries. For the geometries that they

considered, (unstaggered array, triangular and square staggered arrays) they have proved that the appropri-

ate values of the coefficients F.(0, 0) and G.(0, 0) are obtained by performing first the summation perpen-

dicular to the mean flow.

The determination of the coefficients AO and B. requires a final scaling condition specifying, for

example, the mean fluid velocity across the array (see Drummond and Tahir, 1984, for details).

Flow Past a Perturbed Array

The determination of the fluid flow past an arbitrary irregular array of cylinders can be obtained, as in

the case of a regular arrangement, by relying on Eq. (30)-(34). Because of the lack of symmetry in the posi-

tioning of the fibers, the simplifying assumptions given by Eq. (35) and (36) will however cease to be valid

and a severe increase in the level of complexity of the analysis will result. In this respect, note that an
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investigation of the stability of the array requires only the knowledge of the fluid flow past a slightly per-

turbed array the cylinders of which are located at the points

s = sp + 6sp,. (43)

In this relation, the symbol sp denotes the position of the cylinder (p, q) in the regular array while 8 spq

represents its small mispositioning. Introducing Eq. (43) in Eq. (30)-(34) and linearizing the resulting rela-

tions provides a first order approximation of the forces being exerted on the cylinders as a result of their

motions. Retaining only the linear term in 6sq, it is found that the principle of superposition holds; the

forces resulting from the mispositioning of two or more cylinders equal the sum of the contributions corre-

sponding to each of the displacements 8 s1,q as if they were acting alone.

This observation implies that the analysis can be conducted by considering that only one cylinder,

with indices p = q = 0, is not in place, that is

8sP = 0 for (p, q) # (0, 0) (44)

Then, the coefficients Aft and B• can be expressed in the form

Aq = A- + 8A• (45)

and

B = + 6B=q (46)

where 6Afq and 6Bq are the small perturbation terms corresponding to the mispositioning .6so. Further,

to account for the finite memory of the fluid, it will be required that

6Aq -- 0 as p and/or q - oo (47)

and

6Bq -- 0 as p and/or q - oo. (48)

Letting r and/or s tend toward infinity in Eq. (30), it is readily found from Eq. (47) and (48) that

SSA• = 0 (49)
pq

and
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Y, 6Bs = 0. (50)
p.q

Even with the above simplifying assumption, the determination of the solution of Eq. (30)-(34)

appears to be quite cumbersome since there exists in general a different set of coefficients JApq and 8Bmq

for each cylinder. To this end, note that every double summation term appearing in Eq. (30)-(34) is in fact

expressible as a discrete two-dimensional Fourier convolution. Thus, it can be expected that the determina-

tion of the coefficients 8A pq and 8 BPq can be greatly simplified by introducing the Fourier transforms

8NB.(0,€0)= 8Bmq eipo e i' (51)

p,q

and

Am(O, 0)= , 6Aq eP e'q#. (52)
p.q

In fact, combining Eq. (30)-(34) and (43)-(52), it can be shown that

Fn(O, ) 8Am,(O, 0) - a 2 F 2(8, 0)- ( (1-eI¢) 2 i (mn-i) ] 2i
M=1 - - m=2

+l[n a2+ (-i)1e)L (O'0) 6B (0-0)2i .2 m a 2 Fm+j(O,€O) -Gm(O,€) 8B,,(0,0) =

B soo [ 2 a2 F3(0,0>) - 2 a2 F3(O, O) + G2(, 0) + Gz(O, O)]

- 1m Ss~o Aom [ Fm.÷(0,0) + (-I)- F.+ (0, 0) ]+ W s. Fý (0,0) +F,(,0

B o s• Gm+i(o,)+ (-1)-' G+i(0,0) -a 2 (m+ 1) Fm,+2(O,¢)+ (-0)m+÷ Fm+2 (,OO)

no-2 m sO[. j0,/.-I

F(,) + (-<-l' .o, 0) ,Soo 11 ,(,0 ,(,0
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N Bg+,(-O,-O) + [ (-I)' a ,,,0)+(l' +'F2o )8B1SB(9') - (-a)',o,0 JBI (0, 0)

ta' 2i aI 21 Bv)+-)~ a' 2
1 2 oe)J. ,6t 2i -

- 8s. ~)'4[F 1 (,~ 1M~ mii0 )-() Y) ms (G,+2(9. 0) + (-1)' GI+2(0, 0))

-a
2 (t + 2) 8soo ( FI+3(o00) + (-1)' F,+3(0, 0)) - 6s00 (FI+t(e0) + (-1)' F,+ (0,0))

- ~~ (~ ) a' [(n M+ 1) 8SO Gm+t+i (9,0) + (-)m+f1 G,,+t+1(0, 0))~ Ts-.( Fm.+t(9, O) + (-1) Fmn+,(0, 0))

+ a2 ( m Vso (mn + t + 1) ýF+.O 0) + (-1~m+'+' Fm+,+2(0, 0) '-(-a)' 5so F F,+1 (9,0) +(-1)' FI1~(0,0)1
+ 1) Y 2i LJ

(54)

8A1(9, O) +___ 8BBm(9, )
+I a Fm(9,) 0B~e~) + a Fm(O,-O)

a m1-- 2 i 2 i

a Ts-o m ( Fm+, (--, -)+ (- 1)m Fm+i (0, 0))(5

m na 2 1 3Bm(9O,-O) 6B1 (6,O) Fa2 12 - 5 1 -6,-0)
72 8A2(0,,) 0) + * 1_O)] , BI(
a2 2j.,(-0 0 2 i 2i [2 2J

- s i (in+1 a2 [ Fm.+2 &96, -) + (-l)m+1 Fm+2 (0, 0)] (56)
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and

a'7at-2 2 i t 2 i

(-a)' F_,-Bl(-,-)= (_)

t- [(-a)' Ei _ (Ft+i(-O-)+ (-1)' F1 +I(O'O)

(-m+1a ,J (M+ : ) (57)

a m F ) ,. 1(-O,-¢p) + ~)~1F,,+t(0, 0) (7
,,2 t (M -l) Ti

where

F1(O, ePOe'ql m=1 .... (58)P ,q $ pq

(p.q),(O.o)

and

G,(O, 0) = _. e"0 e"* m = 2,... (59)
p.q $pq

(p.q),(O.0)

H(, sYq 9p--)q .1q--) + Y(p-1)(q-1) e1 o e~ qe (60)
H , ) Spq S(p,-1)q Sp(q•1) S(p-1)(q-1)

2

L(O, I) = In S s(p-I )(q- 1) e'° e'. (61)p,q S(p-)q SpNq-.1

Note in Eq. (60) and (61) that the terms L and In I S, 12 are ignored if (r, s) = (0,0). Further, the conven-
Sr,

tion on the order of summation, already discussed in connection with the flow past a regular array, is also

selected here. Finally, note from Eq. (50) and (51), that

6B 1(0, 0) = 0. (62)
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Stability Analysis

The solution of Eq. (53)-(57) provides a representation of the coefficients &BI and of the associated

function 8B1(0, 0) in the form

8B~q = aP" 6soo + jPT (63)

and

JBI(o,0)= a(O,O) 6soo + f(o, 0).6soo. (64)

The perturbation of the force exerted by the fluid on the fiber (r, s) due to the motion of the cylinder (0, 0)

can thus be expressed as

8F" = 4 i ir p 8B" = (4 i Yr u a*') .6So + (4 i ;r u 6" ) 3soo (65)

Relying on the superposition principle discussed in the previous section, it is found that the change in the

force exerted on the fiber (r, s) due to the motion of all cylinders is

F,= [(4 i x, i (r-X-q)) 8 sN + (4 i r .i (r-P)('-q) ) -s-]. (66)

Separating the real and imaginary components, it can be shown that the above relation can be rewritten in

the form

[6F7 18F,-,=• fi(--P)(--•) A(2;-P)(,-•r) 1F6
f(-p)(-q) frp)(.) 6fp6v ) (7)

Sytrs ] 4267)2

where

8sp = 6xpq + i 6 Yp (68)

f,=--4 r up[Img(aP )+ Img(,6)] (69)

fIf =4 1r p[Re(C8PI)-Re(aP)] (70)

f2P =4 r # Re(anq ) + Re(,f ) ] (71)
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f 2Pq =4 ir u[ Img( fi )_ Img( aN)]" (72)

In the above relations, the notations Img(z) and Re(z) designate the real and imaginary parts of a complex

number z.

It is seen from Eq. (67) that the fluid act as a "series of springs" since the forces are proportional to

the displacements. For stability, the stiffness matrix must only possess eigenvalues with positive real parts.

These eigenvalues, denoted in the sequel by 2, and their corresponding eigenvectors

[.... 6xpq 5Ypq 6Xp(q+1) 8Yp(q+l) .... ] satisfy the following equations

I [ f(2, f.(P-,X-q) i x[ 1X r (73)p ~ q f 2 1y)( q 2 21 8 y

for all r and s. Note that the left-hand-side of the above condition represents a discrete two-dimensional

Fourier convolution. Thus, introducing the Fourier transforms

8x(O, 0) = : 8x P. e' 0 e iq (74)
p,q

8y(O, 0) = T, 8ye, e"'8 e iq# (75)
p.q

fii(O,¢) = j fjPq e' e'q = 2Y ir i [a(0,( ) + ,6(, ) - a(-,-O) - /(-0.-€)] (76)
p,q

and similarly

A2(0, 0) =2 r 6(6, 0) - a(0, 0) - a(-O,-0) + 7 -(-0.-0) (77)

f21 (0, 0) = 2 r u Ea(8, €) + f6(e, ) + a(-O,-¢) + ,0(-0.-€)] (78)

f22(, 0) = 2 i x # [ a(O,O) -,6(9, 0) - a(-O,-O) + (-0,-) (79)

it is found that Eq. (73) reduces to the 2x2 eigenvalue problem

f2n(0, 0) f22(0,0) iF6y(O.) iF 6y(O.€) 1
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The eigenvalues A = 1(0, 0) must be such that a nontrivial solution of Eq. (80) exists. This is achieved when

1
2(0 0 = •[fiý(OO) + f2(OO)] a[(fil(OO) -f22(OO))+4 f12(O,O) f2j(O,0))?2 (81)

Numerical Results

In order to illustrate the above theoretical development, two square arrays have been considered; the

first one is unstaggered with a distance between fibers of 42 while the second one is staggered at 450 with a

unit distance between fibers. In order to numerically simulate the specific order of summation associated

with Eq. (41), (42) and (58)-(61), the domain of the indices p and q was selected to be

(p, q) E [-10,10] X [-5000,5000 1. The adequacy of these limits was established by comparing the values

of the coefficients A° and BO, corresponding to a regular array, with the theoretical results of Drummond

and Tahir (1984).

Shown in Fig. 2-6 are contour plots of the eigenvalues corresponding to fiber radii, 0.1, 0.2 and 0.4.

The presence of negative values of A(B, 0) reveals that the array is unstable for all cases considered. Further,

note that the magnitude of the most negative eigenvalue increases as the fiber diameter increases, or equiv-

alently as the fiber concentration increases. It is then concluded that the instability of an array is most pro-

nounced at high fiber concentrations. Finally, note that the values of the parameters 0 and 0 that are associ-

ated with the most negative eigenvalue do not seem to vary substantially with either staggering or fiber con-

centration for a > 0. 2. Figures 3-6 suggest that 0 - 0 (or 2 Yr) and 0 - 1. 1.

Conclusions

In an attempt to explain the phenomenon of fiber clustering in composite materials, the low Reynolds

number flow through an array of rigid cylinders (modeling the fibers) has been investigated. Specifically,

the present study emphasized the determination of the forces exerted by the viscous fluid (the resin) on the

cylinders for an arbitrary array. These results were then used to study the stability of a slightly imperfect
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square array of fibers. The stability analysis reveals that

(1) within the assumption of low Reynolds number, the stability of the array of fibers is independent of

both the flow velocity and the fluid viscosity.

(2) the array of fibers is unstable, that is, small deviations of the fiber locations from a perfectly regular

square, staggered or unstaggered, array will lead in time to a disordered arrangement of fibers.

(3) the magnitude of the most negative eigenvalue, which quantifies the rate at which the disorder grows,

increases with the concentration of fibers.

(4) the value of the most negative eigenvalue and the corresponding mode of instability do not appear to

vary substantially with the staggering.

(5) the dominant mode of instability, corresponding to the most negative eigenvalue, appears to be inde-

pendent of both fiber concentration and staggering for moderate to high fiber concentrations.

Acknowledgements

The support of this work by the grant DAAL03-91-G0030 of the US Army Research Office, Engi-

neering and Science Division, Structural Mechanics Branch is gratefully acknowledged.

References

Chen, S.S., Fujita, K., and Au-Yang, M.K., 1990, Flow Induced Vibration - 1990 -, Proceedings of the 1990

Pressure Vessels and Piping Conference, Nashville, TN, June 17-21, ASME, Publication PVP-189.

Conca, C., Planchard, J., and Vanninathan, M., 1990, "Limits of the Resonance Spectrum of Tube Arrays

Immersed in a Fluid," Journal of Fluids and Structures, Vol. 4, pp. 541-558.



-19-

Drummond, J.E., and Tahir, M.I., 1984, "Laminar Viscous Flow Through Regular Arrays of Parallel Solid

Cylinders," International Journal of Multiphase Flow, Vol. 10, No. 5, pp. 515-540.

Gordon, D., 1978, "Numerical Calculations of Viscous Flow Fields Through Cylinder Arrays," Computers

and Fluids, Vol. 6, pp. 1-13.

Happel, J., and Brenner, H., 1973, Low Reynolds Number Hydrodynamics, Noordhoff, Leyden.

Hasimoto, H., 1959, "On the Periodic Fundamental Solutions of the Stokes Equations and their Application

to Viscous Flow Past a Cubic Array of Spheres," Journal of Fluid Mechanics, Vol. 5, pp. 317-328.

Hjellming, L.N., and Walker, J.S., 1990, "Motion of Continuous Fibers through a Newtonian Resin for

High Fiber Volume Fraction," Journal of Composite Materials, Vol. 24, pp. 853-878.

Kirsch, A.A., and Fuchs, N.A., 1967, "The Fluid Flow in a System of Parallel Cylinders Perpendicular to

the Flow Direction at Small Reynolds Numbers," Journal of the Physical Society of Japan, Vol. 22, No. 5,

pp. 1251-1255.

Kuwabara, S., 1959, "The Forces Experienced by Randomly Distributed Parallel Circular Cylinders or

Spheres in a Viscous Flow at Small Reynolds Numbers," Journal of the Physical Society of Japan, Vol. 14,

No. 4, pp. 527-532.

Miyagi, T., 1958, "Viscous Flow at Low Reynolds Numbers Past an Infinite Row of Equal Circular Cylin-

ders," Journal of the Physical Society of Japan, Vol. 13, No. 5, pp. 493-496.

Sangani, A.S., and Acrivos, A., 1982, "Slow Flow Past Periodic Arrays of Cylinders with Application to

Heat Transfer," International Journal of Multiphase Flow, Vol. 8, No. 3, pp. 193-206.



-20-

Tamada, K., and Fujikawa, H., 1957, "The Steady Two Dimensional Flow of Viscous Fluid at Low

Reynolds Numbers Passing Through an Infinite Row of Equal Parallel Circular Cylinders," Quarterly Jour-

nal of Mechanics and Applied Mathematics, Vol. 10, Part 4, pp. 425-432.

Tamada, K., and Fujikawa, H, 1959, "The Steady Flow of Viscous Fluid at Low Reynolds Numbers Passing

Obliquely Through a Plane Grid Made by Equal Parallel Circular Cylinders," Journal of the Physical Soci-

ety of Japan, Vol. 14, No. 2, pp. 202-216.

White, F.M., 1974, Viscous Fluid Flow, McGraw-Hill.



qa

spq

\ý(-1,0) -1(0,0) - (1,0)

(a) Unstaggered Array

qa

(b) Staggered Array
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